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Abstract

In order to find the maximum likelihood (ML) estimator of the param-
eter pair governing the immigration-death process (a continuous time
Markov chain) we derive its transition probabilities. The likelihood
maximisation problem is reduced from two dimensions to one dimen-
sion. We also show the consistency and the asymptotic normality of
the ML-estimator under an equidistant sampling scheme, given that
the parameter pair lies in some compact subset of the positive part of
the real plane. We thereafter evaluate, numerically, the behaviour of
the estimator and we finally see how our ML-estimation can be applied
to the so-called Renshaw-Särkkä growth interaction model; a spatio-
temporal point process with time dependent interacting marks in which
the immigration-death process controls the arrivals of new marked points
as well as their potential life-times.
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1 Introduction

In the case of continuous time Markov chains, the likelihood theory based on
continuous observations of sample paths has been covered quite extensively in
the literature (see e.g. [2, 3, 12]; see [9] for inference related to branching pro-
cesses). However, in the case of maximum likelihood (ML) estimation based
on processes sampled according to a discrete sampling scheme much less is
done. But in later years general results for the asymptotic properties of ML-
estimators based on discretely sampled Markov jump processes have emerged
(see [5]) and these can be used to establish properties such as strong consis-
tency and asymptotic normality of the ML-estimators for discretely sampled
Markov chains.

In this paper we are considering the ML-estimation of the parameters of
a particular discretely sampled Markov chain, namely the immigration-death
process - sometimes also referred to as the M/M/∞-queue (see e.g. [1] or [8];
see [7] for the problem of parameter estimation for immigration-death models
when only death times are observed). It is a useful tool which can be used for
describing, not only a queue (where the customers arrive according to a Poisson
process and get served immediately upon arrival during iid exponential times),
but also the dynamics of a population size. Regarding the latter application,
one such instance is the role of the immigration-death process in the Renshaw-
Särkkä growth-interaction model (RS-model) (see [15], [16] and [4]), which has
been used to study, among other things, the development of forest stands in
time and space [16]. More specifically, the RS-model is a spatio-temporal
marked point process, X(t) = {[Xi,mi(t)] : i ∈ Ωt}, t ≥ 0, Xi ∼ Uni(W ),
W ⊆ Rd. Here Ωt is an index set giving the points present in W at time t and
the marks, mi(t) ≥ 0, are allowed to interact with each other while growing.
The arrivals of new marked points, [Xi,mi(t)], and the potential lifetimes of
these marked points (they may also die from competition) are governed by
an immigration-death process (see e.g. [10] and [17] for general treatments of
spatial point process statistics and e.g. [6], [14], and [18] for an overview of
spatio-temporal point processes).

We start by finding the transition probabilities of the immigration-death
process which give us the likelihood function. Furthermore, we derive its jump
intensity function and its transition kernel when viewed as a Markov jump
process (Section 2). Treating the process as a Markov jump process, we then
proceed to derive the strong consistency and the asymptotic normality of the
ML-estimators obtained by sampling the process at equidistant sample times
(Section 3). We finally evaluate the ML-estimators numerically (Section 3) and
finish off by assessing how these ML-techniques can be used in the RS-model
(Section 4). In the Appendix we give proofs of some results, derivatives of the
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(log) transition probabilities together with their bounds and the derivation of
the Fisher information matrix.

2 The immigration-death process

The immigration-death process, {N(t)}t≥0, is a time-homogeneous irreducible
continuous-time Markov chain where the possible states for which transitions
i → j are possible are supplied by the state space E = {0, 1, . . .}. It is
governed by the parameter pair θ = (α, µ) which we henceforth, for technical
reasons, assume to take values in some parameter space Θ which is a compact
subset of R2

+. One way of viewing {N(t)}t≥0 is to treat it as a special case
of a birth-death process for which the infinitesimal transition probabilities are
given by

pij(t; θ) := P (N(h+ t) = j|N(h) = i) =


λit+ o(t) if j = i+ 1
1− (λi + µi)t+ o(t) if j = i
µit+ o(t) if j = i− 1
o(t) if |j − i| > 1,

where the birth rates are given by λi = α, i = 0, 1, . . ., and the death rates
are given by µi = iµ, i = 0, 1, . . ., ([8], p. 268-270). Within this framework
the interpretation of {N(t)}t≥0 is the following. By letting the arrivals of new
individuals to a population occur according to a Poisson process with intensity
α and upon arrival assigning to all individuals independent and exponentially
distributed lifetimes with mean 1/µ, N(t) gives us the number of individuals
alive at time t. Another possibility is to view it as an M/M/∞ queuing
system; each customer (arriving according to a Poisson process with intensity
α) is being handled by its own server so that its sojourn time in the system is
exponential with intensity µ and independent of all other customers.

Being a Markov process, the finite dimensional distributions of {N(t)}t≥0

are controlled by its transition probabilities, pij(t; θ). The exact form of
pij(t; θ) is given by the following proposition, for which the proof is given
in Appendix A.

Proposition 1. The transition probabilities of the immigration-death process
are given by

pij(t; θ) =
e
−α
µ (1−e−µt)

j!

j∑
k=0

(
α

µ

)k (j
k

)
e−(j−k)µt

(1− e−µt)j−2k−i
i!

(i− (j − k))!

=

j∑
k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k), (2.1)
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where i, j ∈ E = N, θ = (α, µ) ∈ Θ ⊆ R2
+, f

Poi(ρ)
(·) is the Poisson density

with parameter ρ = α
µ

(
1− e−µt

)
, and f

Bin(i,e−µt)
(·) is the Binomial density

with parameters i and e−µt. Moreover, we have that

E[N(s+ t)|N(s) = i] = i e−µt +ρ (2.2)

E[N2(s+ t)|N(s) = i] = i(i− 1) e−2µt +(1 + 2ρ)i e−µt +ρ2 + ρ.

We will make use of the following recursive expression for the transition
probabilities. Its proof can be found in Appendix A.

Corollary 1. The transition probabilities can be expressed recursively as

pi(j+1)(t; θ) =
1

j + 1

(
i− j

eµt−1
+ ρ

)
pij(t; θ) +

1

j + 1

ρ

eµt−1
pi(j−1)(t; θ)

=
1

(j + 1)(eµt−1)

((
i− j + ρ(eµt−1)

)
pij(t; θ) + ρpi(j−1)(t; θ)

)
,

where i, j ∈ E = N and ρ = α
µ

(
1− e−µt

)
, and consequently

pi(j−1)(t; θ)

pij(t; θ)
=

(j + 1)(eµt−1)

ρ

pi(j+1)(t; θ)

pij(t; θ)
+
j − i
ρ
− eµt +1.

In practice it is often natural to condition on N(0) = 0. In this situa-
tion one can easily find that the marginal distribution of N(t) is given by the
Poisson distribution with parameter ρ(t) = α

µ

(
1− e−µt

)
since P (N(t) = j) =∑∞

i=0 pij(t; θ)P (N(0) = i) = p0j(t; θ) = e−ρ(t) ρ(t)j/j!. Furthermore, in this

case we get that N(t)
d→ Poi(α/µ) as t → ∞ since limt→∞ ρ(t) = α/µ. Ex-

tending this, the following proposition (see [1]) establishes the ergodicity of
{N(t)}t≥0 (which together with the irreducibility gives us its positive recur-
rence) and its invariant distribution.

Proposition 2. The immigration-death process is ergodic with invariant dis-
tribution given by the Poisson distribution with mean α/µ.

Note that this invariant distribution is unique due to the positive recur-
rence, and it is also the same as its asymptotic distribution since every asymp-
totic distribution is an invariant distribution.

On the interpretation of pij(t; θ) = P (N(h+ t) = j|N(h) = i; θ) =∑i∧j
k=0 fPoi(ρ)(j − k)fBin(i,e−µt)(k), note that

fPoi(ρ)(j − k) = P(j − k new arrivals during (h, h+ t))

fBin(i,e−µt)(k) = P(k of the i individuals alive at time h survive (h, h+ t)),
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thus implying that pij(t; θ) expresses the sum of the probabilities of all pos-
sible ways in which we can decrease i individuals to j individuals. Further-
more, when i ≤ j, we get that pij(t; θ) simply represents the convolution of
a Bin(i, e−µt)-density and a Poi(ρ)-density, hence expressing the probabil-
ity that the sum of i iid Exp(e−µt)-distributed random variables added to a
Poi(ρ)-distributed random variable takes the value j.

A further characterisation of {N(t)}t≥0 which we will exploit when we
establish the asymptotic properties of the ML-estimators is to consider
{N(t)}t≥0 as a Markov jump process.

Proposition 3. Let θ = (α, µ) ∈ Θ ⊆ R2
+. {N(t)}t≥0 is a Markov jump

process with state space E = N, jump intensity function

λ(θ; i) = α+ µi, i ∈ E,

and transition kernel r(θ; ·) = {r(θ; i, j) : i, j ∈ E}, where

r(θ; i, j) =
1

α+ µi
(α1{j = i+ 1}+ µi1{j = i− 1}) , i, j ∈ E.

Proof. Let {N(t)}t≥0 be adapted to some suitable filtered probability space(
Ω,F , {Ft}t≥0 ,P

)
. Since a continuous-time Markov chain by definition is a

Markov jump process ([11], p. 243) it holds that {N(t)}t≥0 is a Markov jump
process with state space E = N.

Let 0 = τ0 < τ1 < τ2 < . . . (limn→∞ τn =∞) be the jump-times of N(t) =
N(0) +

∑∞
k=1 Yk1{τk ≤ t}, having appurtenant jump-sizes Y1, Y2, . . ., where

Yk = N(τk)−N(τk−1) ∈ {−1, 1}, k = 1, 2, . . . (we consider a right continuous
version of {N(t)}t≥0). This is the embedded jump chain of {N(t)}t≥0.

Since {N(t)}t≥0 is a Markov jump process, each increment τk − τk−1 will
be independent of Fτk−1

and, given that N(τk−1) = i, it holds that τk −
τk−1 is Exp (λ(θ; i))-distributed. Noticing that the lifetimes of all individuals
generated by N(t), ξ1, ξ2, . . ., are iid Exp(µ)-distributed and also that an inter-
jump-time, τα, of the (Poisson) arrival process, B(t), is Exp(α)-distributed we

get that τk−τk−1
d
= min{τα, ξ1, . . . , ξi} for i ∈ Z+, and clearly τk−τk−1

d
= τα if

i = 0. Since the minimum of n independent exponential random variables with
parameters λ1, . . . , λn is exponentially distributed with parameter

∑n
i=1 λi this

implies that the jump intensity function is given by

λ(θ; i) =
(
Eθ[τk − τk−1|N(τk−1) = i]

)−1
= α+ µi, i ∈ E,

where Eθ[·] denotes expectation under the parameter pair θ = (α, µ). Applying

4



again the arguments above we get that

r (θ; i, i+ 1) = P (N(τk) = i+ 1|N(τk−1) = i)

= P (τα < min (ξ1, . . . , ξi) |N(τk−1) = i)

=

∫ ∞
0

(
1− e−αy

)
fmin(ξ1,...,ξi)|N(τk−1) (y|i) dy

= 1− E
[
e−αmin(ξ1,...,ξi)

∣∣∣N(τk−1) = i
]

= 1−
(

1 +
α

µi

)−1

=
α

α+ µi
,

since a random variable X ∼ Exp(γ) has moment generating function
mX(t) = E[etX ] = (1 − t/γ)−1. Therefore, since |N(τk) − N(τk−1)| = 1
for all k = 1, 2, . . ., the transition kernel of the Markov jump process,
r(θ; ·) = {r(θ; i, j) : i, j ∈ E}, is determined by

r(θ; i, j) = P (N(τk) = j|N(τk−1) = i)

= 1{j = i+ 1}P (N(τk) = i+ 1|N(τk−1) = i)

+ 1{j = i− 1, i > 0} (1− P (N(τk) = i+ 1|N(τk−1) = i))

=
1

α+ µi
(α1{j = i+ 1}+ µi1{j = i− 1}) .

3 Maximum likelihood estimation of α and µ

Assume now that we sample {N(t)}t≥0 as N1, . . . , Nn at the respective times
0 = T0 < T1 < . . . < Tn. Since the likelihood function for θ = (α, µ) ∈ Θ,
Ln(θ), is given by the joint density of the distribution of (N(T1), . . . , N(Tn)),
by the Markov property of N(t) it can be factorised into a product of tran-
sition probabilities, i.e. Ln(θ) = P(N(T1) = N1)

∏n
k=2 pNk−1Nk

(t; θ). Since by

assumption we condition on N(T0) = 0, the log-likelihood will be given by

ln(θ) =

n∑
k=1

log pNk−1Nk
(∆Tk−1; θ), (3.1)

where ∆Tk−1 = Tk−Tk−1. In the case of equidistant sampling, i.e. ∆Tk−1 = t
for each k = 1, . . . , n, the log-likelihood takes the form

ln(θ) =
∑
i,j∈E

Nn(i, j) log pij(t; θ), (3.2)
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where Nn(i, j) =
∑n

k=1 1 {(Nk−1, Nk) = (i, j)}.
Hereby, for each of the sampling schemes, the likelihood estimator of θ =

(α, µ) ∈ Θ (obtained by replacing Nk by N(Tk), k = 0, 1, . . ., in the expressions
(3.1) and (3.2)) will be defined as

(α̂n, µ̂n) = θ̂n = arg max
θ∈Θ

ln(θ). (3.3)

3.1 The ML-estimators

The ML-estimator for θ = (α, µ) is given by solving the system of equations{
∂
∂α ln(θ) =

∑
i,j∈E Nn(i, j) ∂

∂α log pij(t; θ) = 0
∂
∂µ ln(θ) =

∑
i,j∈E Nn(i, j) ∂

∂µ log pij(t; θ) = 0.
(3.4)

As no closed form solution can be found by solving theses likelihood equations,
numerical methods have to be employed in order to get ML-estimates. What
is possible, however, is to express the estimator of α as a function of both
the sample and the parameter µ, hence reducing the maximisation to a one
dimensional problem.

Proposition 4. The ML-estimator, θ̂n = (α̂n, µ̂n), is found by maximising
ln(α̂n(µ), µ) over Θ2 ⊆ R+ (the projection of Θ onto the second dimension of
R2), i.e.

µ̂n = arg max
µ∈Θ2

ln(α̂(µ), µ) (3.5)

α̂n = α̂n (µ̂n) ,

where α̂n(µ) is given by expression (3.6).

Proof. The derivatives ∂
∂α log pij(t; θ) and ∂

∂µ log pij(t; θ) are given, respec-
tively, by (B.1) and (B.2) in Appendix B. Plugging these into the system
of equations (3.4) we first get

1

α

∑
i,j∈E

Nn(i, j)
pij(t; θ)k
pij(t; θ)

− ρ

α

=n︷ ︸︸ ︷∑
i,j∈E

Nn(i, j) = 0

which gives us (recall that ρ = α
µ

(
1− e−µt

)
)

∑
i,j∈E

Nn(i, j)
pij(t; θ)k
pij(t; θ)

=
α

µ

(
1− e−µt

)
n.
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Furthermore,

0 =
ρτ

(1− e−µt)µ

=n︷ ︸︸ ︷∑
i,j∈E

Nn(i, j)− µt

(1− e−µt)µ

∑
i,j∈E

Nn(i, j)(j − i e−µt)

+
τ − µt

(1− e−µt)µ

∑
i,j∈E

Nn(i, j)
pij(t; θ)k
pij(t; θ)

which gives us (recall that τ = 1− e−µt−µt e−µt)∑
i,j∈E

Nn(i, j)
pij(t; θ)k
pij(t; θ)

=
ρτn− µt

∑
i,j∈E Nn(i, j)(j − i e−µt)

µt− τ
.

By putting these two expressions together we get

α = α̂n(µ) :=
µ/(1− e−µt)

2
(

1−e−µt

µt − e−µt
)
− 1

1

n

∑
i,j∈E

Nn(i, j)(j − i e−µt)

=
µ

2
(

1−e−µt

µt − e−µt
)
− 1

1

n

(
e−µtNn −N0

1− e−µt
+

n∑
k=0

Nk

)
. (3.6)

3.2 Asymptotic properties of the ML-estimators

We now wish to establish the consistency and the asymptotic normality of the
sequence of estimators (3.3). We do this by showing that the immigration-
death process fulfils the conditions under which the related theorems in [5]
hold. We first present the theorems of [5] and then give the results for
{N(t)}t≥0 as corollaries to the theorems.

The general setting is the following. Let X(t) be a Markov jump
process with countable state space E, having transition kernel r(θ; ·) =
{r(θ; i, j) : i, j ∈ E} and intensity function λ(θ; i), which are controlled by the
parameter θ = (θ1, ..., θp) ∈ Θ ⊆ Rp. We let θ0 denote the actual value of
the underlying controlling parameter. Assume now that we sample X(t) at
the times Tn = nt, n ∈ N, t > 0 (equidistant sampling). From the Markov
property of X(t) the observation chain, Z = (Zn)∞n=1 ≡ (X(Tn))∞n=1, will also
be a Markov chain having transition kernel q(θ; ·) = {q(θ; i, j) : i, j ∈ E} =
{P(X(Tn) = j|X(Tn−1) = i; θ) : i, j ∈ E}. The log-likelihood of (Z1, . . . , Zn),
given that Z0 = X(0) = z, is given by

ln(θ) =

n∑
k=1

log q(θ;Zk−1, Zk) =
∑
i,j∈E

Nn(i, j) log q(θ; i, j),
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where Nn(i, j) =
∑n

k=1 1 {(Zk−1, Zk) = (i, j)}. The likelihood estimator will
be defined as

θ̂n = arg max
θ∈Θ

ln(θ).

In the sequel we denote the partial derivatives of a function ψ(·) of θ by
Duψ = ∂ψ/∂θu and D2

uvψ = ∂2ψ/∂θu∂θv, u, v = 1, ..., p.
Consider now the following series of conditions put on (Zn)n∈N.

General conditions (G):

Call any function γ(·) defined on [0,∞) a continuity modulus if it is in-
creasing and limx→0 γ(x) = γ(0) = 0.

(G1) Under θ0 the Markov chain (Zn)n∈N has a unique invariant proba-
bility measure πθ0 having moments of order a, for some a ≥ 1, i.e.∑

i∈E |i|aπθ0(i) <∞.

(G2) For any πθ0-integrable function φ : E → R, the following strong law of
large numbers holds:

1

n

n∑
k=1

φ(Zk)
a.s.−→

∑
i∈E

φ(i)πθ0(i) as n→∞.

(G3) Θ is a compact subset of Rp.

(G4) For all θ ∈ Θ, r(θ; ·) is an irreducible kernel and λ(θ; ·) is positive.

(G5) For some constant C and for all i, j ∈ E,

| log q(θ0; i, j)| ≤ C(1 + |i|a/2 + |j|a/2)

(G6) There exists a continuity modulus γ(·) such that, for all i, j ∈ E and
θ, θ

′ ∈ Θ,

| log q(θ; i, j)− log q(θ
′
; i, j)| ≤ γ(|θ − θ′ |)(1 + |i|a/2 + |j|a/2).

Identifiability condition (I):

(I) For any θ 6= θ0, q(θ; ·) 6= q(θ0; ·).
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Normality conditions (N):
Assume that θ0 is an interior point of Θ and that there is a neighbourhood

Λθ0 of θ0 such that, for any θ ∈ Λθ0 and for any (i, j) ∈ E2, the mapping
θ 7→ g(θ; i, j) := log q(θ0; i, j)− log q(θ; i, j) is twice continuously differentiable
and satisfies the following conditions for all u, v = 1, . . . , p :

(N1) (i) max
{
|Du log q(θ0; i, j)|, |D2

uv log q(θ0; i, j)|
}
≤ C(1 + |i|a/2 + |j|a/2);

(ii) there exists a continuity modulus σuv such that, for θ ∈ Λθ0 , (i, j) ∈
E2,

|D2
uv log q(θ0; i, j)−D2

uv log q(θ; i, j)| ≤ σuv(|θ0−θ|)(1+|i|a/2+|j|a/2);

(N2) for every i ∈ E, the family of transition kernels {q(θ; i, ·) : θ ∈ Λθ0} is
regular at θ0, in the sense that

(i)
∑
j∈E

(Du log q(θ0; i, j)) q(θ0; i, j) = 0;

(ii)

Iuv(θ0; i) =
∑
j∈E

(Du log q(θ0; i, j)) (Dv log q(θ0; i, j)) q(θ0; i, j)

= −
∑
j∈E

(
D2
uv log q(θ0; i, j)

)
q(θ0; i, j).

(N3) The matrix I(θ0; i) = (Iuv(θ0; i))u,v=1,...,p is the Fisher information ma-
trix at θ0 associated with the family of distributions {q(θ; i, ·) : θ ∈ Λθ0}.
The (asymptotic) Fisher information of (Zn)n∈N,

I(θ0) =
∑
i∈E

I(θ0; i)πθ0(i),

is invertible.

Theorem 1. Let assumptions (G) and (I) hold. Then the maximum likelihood
estimator θ̂n is strongly consistent, i.e. θ̂n

a.s.−→ θ0 as n→∞.

Theorem 2. Let assumptions (G) and (N) hold. Then
√
n
(
θ̂n − θ0

)
con-

verges in distribution to the p-dimensional zero-mean Gaussian distribution
with covariance matrix I(θ0)−1, as n → ∞, for every weakly consistent esti-
mator θ̂n of θ0.

In the case of {N(t)}t≥0 these theorems translate into the following corol-
laries. We start with the consistency (Corollary 2) and then show the asymp-
totic normality (Corollary 3).

9



Corollary 2. Let Θ be any compact subset of R2
+. Then the maximum likeli-

hood estimator for the immigration-death process satisfies

(α̂n, µ̂n)
a.s.−→ (α0, µ0)

as n→∞, where (α0, µ0) ∈ Θ is the true parameter pair.

Corollary 3. Let Θ be any compact subset of R2
+. Furthermore, assume that

(log(α0 + µ0) − log(α0))/µ0 ≥ 2t. Then, as n → ∞,
√
n ((α̂n, µ̂n)− (α0, µ0))

converges in distribution to the two-dimensional zero-mean Gaussian distribu-
tion with covariance matrix, I(θ0)−1, given by expression (3.11).

Remarks: Note that the results in these corollaries still may hold for N(t)
under a different sampling scheme than equidistant sampling, although the
approach used to prove the results may be different.

Regarding the condition given in Corollary 3, g(α0, µ0) :=
log(α0+µ0)−log(α0)

µ0
≥ 2t, by the mean value theorem we get that

1
α0+µ0

< g(α0, µ0) < 1
α0

. This means that the condition will be ful-
filled if 2t(α0 + µ0) ≤ 1, which is to say that we may sample the process
relatively sparsely when both α0 and µ0 are small and, conversely, we have
to follow a tight sampling scheme when max(α0, µ0) becomes large. In other
words, if there is a lot of activity going on in the process we need to monitor
it more frequently, compared to when arrivals and deaths occur rarely, in
order to ascertain that the condition is fulfilled. Note further that when α0

increases, with µ0 kept fixed, we are required to sample the process more
densely in order for the condition to hold (limα0→∞ g(α0, µ0) = 0) and when
we decrease α0, with µ0 fixed, it is more likely that the condition is fulfilled
(limα0→0 g(α0, µ0) =∞). Furthermore, when we let µ0 increase while keeping
α0 fixed, we move towards a situation where the condition will not be fulfilled
(limµ0→∞ g(α0, µ0) = 0). When we decrease µ0, with α0 fixed, so that N(t) is
approaching a Poisson process, we get that limµ0→0 g(α0, µ0) = 1/α0 so that
the condition will be fulfilled provided that α0 is not too big (note, however,
that when N(t) is a Poisson process, by exploiting its Lévy process properties
and the central limit theorem, one can easily show that the ML-estimator,
α̂n, is asymptotically Gaussian).

Proof of Corollary 2. We have that (α, µ) = θ ∈ Θ where Θ is a compact
subset of R2

+, hence (G3) holds. Furthermore, consider the observation chain
of {N(t)}t≥0, (Zn)n∈N, where Zn = N(Tn) = N(nt), and define q(θ; i, j) :=
pij(t; θ), i, j ∈ E = N, which constitute the transition kernel q(θ; ·).

By Proposition 2 the invariant distribution of {N(t)}t≥0 under θ0 =
(α0, µ0), πθ0 , is given by the Poi(α0/µ0)-distribution. Since πθ0 = πθ0P(t)

10



for any t ≥ 0, where P(t) = (pij(t))i,j∈N is the matrix of transition proba-
bilities for the time increment t, we see that πθ0(·) = P (Poi(α0/µ0) ∈ ·) is
also the invariant probability measure for (Zn)n∈N, which has moments of all
orders a ∈ N. Hence, condition (G1) is fulfilled.

Due to the positive recurrence of {N(t)}t≥0 (provided by Proposition 2),
by an ergodic theorem (e.g. Theorem 1.10.2 in [13]) condition (G2) will be
fulfilled.

By Proposition 3 the Markov jump process {N(t)}t≥0 has intensity
λ(θ; i) = α+µi, i ∈ E, which clearly is positive for all θ ∈ Θ. Since {N(t)}t≥0

is irreducible if and only if its embedded jump chain, (Yn)n≥1, is irreducible
([11], p. 244) we get that its transition kernel r(θ; ·) = {r(θ; i, j) : i, j ∈ E},
r(θ; i, j) = 1

µi+α (α1{j = i+ 1}+ µi1{j = i− 1}), is irreducible for all θ ∈ Θ
and thereby condition (G4) is fulfilled.

Since q(θ0; i, j) > 0 for all i, j ∈ E we have that | log q(θ0; i, j)| < ∞ for
all i, j ∈ E. Furthermore, the free choice of a ∈ N allows us to create an
arbitrary large bound (1 + |i|a/2 + |j|a/2), when i, j ∈ {2, 3, . . .}. Hence, by
choosing, say, C = maxi,j∈{0,1} |q(θ0; i, j)| we have shown that condition (G5)

holds since there are a ∈ N such that | log q(θ0; i, j)| ≤ C(1 + |i|a/2 + |j|a/2).
We now wish to show that there is a continuity modulus, γ(·), such that

| log q(θ; i, j)− log q(θ
′
; i, j)| ≤ γ(|θ − θ′ |)(1 + |i|a/2 + |j|a/2),

for all θ, θ
′ ∈ Θ and for all i, j ∈ E. Denoting by Θ1 and Θ2 the projections

of Θ onto the first and the second dimension, respectively, by the compact-
ness of Θ ⊆ R2

+ we have that αmin := inf Θ1 > 0, αmax := sup Θ1 < ∞,
µmin := inf Θ2 > 0 and µmax := sup Θ2 < ∞. By using the bounds given by
expressions (B.3) and (B.4), we get that

|D1 log q(θ; i, j)| < t+
j

α
≤ t+

j

αmin
<∞

|D2 log q(θ; i, j)| <
αt2 + (3j + i)t

1− e−µt
≤ αmaxt

2 + (3j + i)t

1− e−µmint
<∞.

Letting Λ = (αmin, αmax)× (µmin, µmax) we have, by the mean value theorem
and the Schwarz-inequality, for θ, θ

′ ∈ Θ and some 0 < c < 1, that

11



∣∣∣log q(θ; i, j)− log q(θ
′
; i, j)

∣∣∣ (3.7)

≤
∣∣∣θ − θ′∣∣∣ ∣∣∣∇ log q

(
(1− c)θ + cθ

′
; i, j

)∣∣∣
=

∣∣∣θ − θ′∣∣∣√(D1 log q((1− c)θ + cθ′ ; i, j))
2

+ (D2 log q((1− c)θ + cθ′ ; i, j))
2

≤
∣∣∣θ − θ′∣∣∣ (|D1 log q((1− c)θ + cθ

′
; i, j)|+ |D2 log q((1− c)θ + cθ

′
; i, j)|

)
≤

∣∣∣θ − θ′∣∣∣ sup
θ,θ′∈Λ̄

(
|D1 log q(θ; i, j)|+ |D2 log q(θ

′
; i, j)|

)
<

(
t+

j

αmin
+
αmaxt

2 + (3j + i)t

1− e−µmint

) ∣∣∣θ − θ′∣∣∣ (1 + |i|a/2 + |j|a/2),

where Λ̄ denotes the closure of Λ. Since the free choice of a ∈ N (the order of
the moment of πθ0) allows us to make (1 + |i|a/2 + |j|a/2) as large as required,
provided that i ≥ 2 and/or j ≥ 2, we only have to take into consideration the
cases where i, j ∈ {0, 1}. Since the right hand side of (3.7) is maximised when
i = j = 1 (given that i, j ∈ {0, 1}) we choose as continuity modulus

γ(|θ − θ′ |) =

(
t+

1

αmin
+
αmaxt

2 + 4t

1− e−µmint

)
|θ − θ′ |

and we have shown that condition (G6) holds.
To check the identifiability condition (I) consider the probability gener-

ating (p.g.f.) function of (N(h + t)|N(h) = i) under θ ∈ Θ, Gi (s; θ), given
by (A.2). If Gi (s; θ) 6= Gi (s; θ0), for θ 6= θ0, it follows that {pij(t; θ) : i, j ∈
E} 6= {pij(t; θ0) : i, j ∈ E}. We check whether the assumption 1 = Gi(s;θ0)

Gi(s;θ)
contradicts any of the three possible scenarios where θ 6= θ0. Note that
GX(1) = E[1X ] = 1 for all random variables X so we assume s 6= 1.

1. Assume α 6= α0 and µ = µ0:

1 =
Gi (s; θ0)

Gi (s; θ)
= exp

{
(α0 − α)(s− 1)

(
1− e−µt

)
/µ
}

holds iff α0 = α.

2. Assume α = α0 and µ 6= µ0:
Since (1− e−x)/x is a strictly decreasing function

1 =

(
1 + (s− 1) e−µ0 t

1 + (s− 1) e−µt

)i
︸ ︷︷ ︸

=1 iff µ0=µ or i=0

exp

{
αt(s− 1)

(
1− e−µ0 t

µ0t
− 1− e−µt

µt

)}

can hold iff µ0 = µ.
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3. Assume α 6= α0 and µ 6= µ0:

1 =

(
1 + (s− 1) e−µ0 t

1 + (s− 1) e−µt

)i
︸ ︷︷ ︸

=1 iff µ0=µ or i=0

exp

{
(s− 1)

(
α0

µ0
(1− e−µ0 t)− α

µ
(1− e−µt)

)}
︸ ︷︷ ︸

=(∗)

.

If α0
µ0

= α
µ we get (∗) = 0 iff µ = µ0 (by the monotonicity of 1 − e−x),

and if 1− e−µt = η(1− e−µ0t), where η = α0µ
αµ0

> 0, we also must require
µ = µ0.

Hence, there is a one-to-one correspondence between θ and the kernel q(θ; ·).
The corollary hereby follows from Theorem 1.

Proof of Corollary 3. Let Θ be a compact subset of R2
+ and let θ0 = (α0, µ0)

be an interior point of Θ. Furthermore, consider the observation chain of
{N(t)}t≥0, (Zn)n∈N, where Zn = N(Tn) = N(nt), and define q(θ; i, j) :=
pij(t; θ), i, j ∈ E = N. From Corollary 2 we know that the estimators (3.3),

θ̂n = (α̂n, µ̂n), are strongly consistent and that the general conditions (G)
hold.

Since the expression for q(θ; i, j), given by (2.1), contains the term e−ρ

where ρ = α
µ

(
1− e−µt

)
, we get that, for all (i, j) ∈ E2 and for all θ ∈ Θ,

log q(θ; i, j) is infinitely many times continuously differentiable w.r.t. θ. This
in particular implies that the mapping θ 7→ g(θ; i, j) := log q(θ0; i, j) −
log q(θ; i, j) is twice continuously differentiable for all θ in some neighbour-
hood Λθ0 ⊆ Θ of θ0.

Regarding condition (N1) we only have to be concerned with the cases
where i, j ∈ {0, 1} since we may choose a as any positive integer, implying
that (1 + |i|a/2 + |j|a/2) can be made as large as required when i ≥ 2 and/or
j ≥ 2.

Expressions (B.3), (B.4), (B.6), (B.10) and (B.13) in Appendix B give
us bounds for |Du log q(θ0; i, j)| and |D2

uv log q(θ0; i, j)|, u, v = 1, 2, from
which we get (recall from the proof of Corollary 2 the definitions of
Θ1,Θ2, αmin, αmax, µmin and µmax)

max
(i,j)∈{0,1}2

|D1 log q(θ0; i, j)| < max
j∈{0,1}

sup
α∈Θ1

(
j

α
+ t

)
=

1

αmin
+ t =: C1 <∞,

max
(i,j)∈{0,1}2

|D2 log q(θ0; i, j)| < max
(i,j)∈{0,1}2

sup
µ∈Θ2

sup
α∈Θ1

(
αt2 + (3j + i)t

1− e−µt

)
=

αmaxt
2 + 4t

1− e−µmint
=: C2 <∞,
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max
(i,j)∈{0,1}2

|D2
11 log q(θ0; i, j)| < max

(i,j)∈{0,1}2
sup
α∈Θ1

j + 2(j + αt)2

α2

<
1 + 2(1 + αmaxt)

2

α2
min

=: C11 <∞,

max
(i,j)∈{0,1}2

|D2
12 log q(θ0; i, j)| = max

(i,j)∈{0,1}2
|D2

21 log q(θ0; i, j)|

< max
(i,j)∈{0,1}2

sup
µ∈Θ2

sup
α∈Θ1

(
(j2 + j)t

α
+ αt3 +

j(j + i)t

(1− e−µt)α
+ t2(1 + j)

+
j + i

µ
t+

(j + αt)(αt2 + (3j + i)t)

(1− e−µt)α

)
<

2t

αmin
+ αmaxt

3 +
2t

(1− e−µmint)αmin
+ 2t2

+
2

µmin
t+

(1 + αmaxt)(4 + αmaxt)

(1− e−µmint)αmin
t =: C12 <∞,

max
(i,j)∈{0,1}2

|D2
22 log q(θ0; i, j)| <

< max
(i,j)∈{0,1}2

sup
µ∈Θ2

sup
α∈Θ1

{(
αt2 + (3j + i)t

1− e−µt

)2

+ t2
(
j2 + 2(j + i)j +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2
)}

<

(
αmaxt

2 + 4t

1− e−µmint

)2

+ t2
(
6 + 10αmaxt+ α2

maxt
2 + µ2

maxt
2(6 + 3αmaxt)

)
=: C22 <∞,

so that by choosing C = max{C1, C2, C11, C12, C22} we have that

max
{
|Du log q(θ0; i, j)|, |D2

uv log q(θ0; i, j)|
}
< C(1 + |i|a/2 + |j|a/2),

for all u, v = 1, 2 and all (i, j) ∈ E2.
By the mean value theorem and the Schwarz-inequality it holds that∣∣D2
uv log q(θ; i, j)−D2

uv log q(θ0; i, j)
∣∣

|θ − θ0|
≤

∣∣∇D2
uv log q ((1− c)θ + cθ0; i, j)

∣∣
≤ |D1D

2
uv log q((1− c)θ + cθ0; i, j)|

+ |D2D
2
uv log q((1− c)θ + cθ0; i, j)|
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where θ and θ0 are in some open subset of R2 (in particular θ, θ0 ∈ Λθ0) and
0 < c < 1. Since, for all θ ∈ Θ, by expressions (B.15), (B.16), (B.17) and
(B.18), there are bounds such that (by the compactness of Θ)

D3
111 log q(θ; i, j) < B111(α, µ, t, j, i) <∞

D3
112 log q(θ; i, j) < B112(α, µ, t, j, i) <∞

D3
122 log q(θ; i, j) < B122(α, µ, t, j, i) <∞

D3
222 log q(θ; i, j) < B222(α, µ, t, j, i) <∞,

by choosing the continuity indices according to

σ11(z) = max
(i,j)∈{0,1}2

(
sup
µ∈Θ2

sup
α∈Θ1

B111(α, µ, t, j, i) + sup
µ∈Θ2

sup
α∈Θ1

B112(α, µ, t, j, i)

)
z

σ12(z) = σ21(z)

= max
(i,j)∈{0,1}2

(
sup
µ∈Θ2

sup
α∈Θ1

B112(α, µ, t, j, i) + sup
µ∈Θ2

sup
α∈Θ1

B122(α, µ, t, j, i)

)
z

σ22(z) = max
(i,j)∈{0,1}2

(
sup
µ∈Θ2

sup
α∈Θ1

B122(α, µ, t, j, i) + sup
µ∈Θ2

sup
α∈Θ1

B222(α, µ, t, j, i)

)
z

we have shown that condition (N1) holds.
Turning now to condition (N2), with ρ0 = α0

µ0
(1 − e−µ0t) and τ0 = 1 −

e−µ0t−µ0t e−µ0t, we have that

(D1 log q(θ0; i, j)) q(θ0; i, j) =
ρ0

α0

(
pi(j−1)(t; θ0)− pij(t; θ0)

)
and

(D2 log q(θ0; i, j)) q(θ0; i, j) =
ρ0τ0

(1− e−µ0t)µ0

(
pij(t; θ0)− pi(j−1)(t; θ0)

)
−
(
j − i e−µ0t

)
t

1− e−µ0t
pij(t; θ0) +

ρ0t

1− e−µ0t
pi(j−1)(t; θ0)

so that, by considering expression (2.2) and noticing that

∞∑
j=0

pij(t; θ0) =
∞∑
j=0

pi(j−1)(t; θ0) =
∞∑
j=0

pi(j−2)(t; θ0) = 1,

we find that

∑
j∈E

(D1 log q(θ0; i, j)) q(θ0; i, j) =
ρ0

α0

 ∞∑
j=0

pi(j−1)(t; θ0)−
∞∑
j=0

pij(t; θ0)

 = 0
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and∑
j∈E

(D2 log q(θ0; i, j)) q(θ0; i, j) =

=
ρ0τ0

(1− e−µ0t)µ0

 ∞∑
j=0

pij(t; θ0)−
∞∑
j=0

pi(j−1)(t; θ0)


− t

1− e−µ0t

( ∞∑
j=0

jpij(t; θ0)︸ ︷︷ ︸
(2.2)
= ρ0+i e−µ0t

−i e−µ0t

)
+

ρ0t

1− e−µ0t

∞∑
j=0

pi(j−1)(t; θ0) = 0.

Since

D2
uv log q(θ0; i, j) =

D2
uvq(θ0; i, j)

q(θ0; i, j)
− (Du log q(θ0; i, j)) (Dv log q(θ0; i, j)) ,

checking the condition

Iuv(θ0; i) =
∑
j∈E

(Du log q(θ0; i, j)) (Dv log q(θ0; i, j)) q(θ0; i, j)

= −
∑
j∈E

(
D2
uv log q(θ0; i, j)

)
q(θ0; i, j).

is equivalent to checking ∑
j∈E

D2
uvq(θ0; i, j) = 0,

which, according to expressions (B.7), (B.11) and (B.14), holds for all combi-
nations of u, v ∈ {1, 2}. Thus condition (N2) holds.

Considering expressions (C.1), (C.2) and (C.3), we get that the Fisher
information matrix at θ0 associated with {q(θ; i, ·) : θ ∈ Λθ0} is given by

I(θ0; i) =

(
I11(θ0; i) I12(θ0; i)
I21(θ0; i) I22(θ0; i)

)

= A(θ0) +B(θ0)i+ C(θ0)

 ∞∑
j=0

(
pi(j−1)(t; θ)

)2
pij(t; θ)

− 1
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where

A(θ0) =

(
0 − t

µ0

− t
µ0

α2
0µ0t(2τ0−µ0t)

ρ0µ40

)
, B(θ0) =

(
0 0

0 α0t2 e−µ0t

µ0ρ0

)
,

C(θ0) =

 ρ20
α2
0

ρ0(µ0t−τ0)
µ20

ρ0(µ0t−τ0)
µ20

α2
0(τ0−µ0t)2

µ40

 ,

which implies that the (asymptotic) Fisher information is given by

I(θ0) = A(θ0) +B(θ0)
∑
i∈E

iπθ0(i) + C(θ0)

∑
i,j∈E

(
pi(j−1)(t; θ0)

)2
pij0(t; θ)

πθ0(i)− 1


= A(θ0) +

α0

µ0
B(θ0) + (Ξ− 1)C(θ0), (3.8)

where Ξ =
∑

i,j∈E
(pi(j−1)(t;θ0))

2

pij(t;θ0) πθ0(i). It holds that I(θ0) is invertible iff

det(I(θ0)) =
t2

µ2
0

(
ρ0(1 + e−µ0t) (Ξ− 1)− 1

)
6= 0,

which is to say

Ξ 6= 1 + ρ0(1 + e−µ0t)

ρ0(1 + e−µ0t)
. (3.9)

By Corollary 1 we get that

Ξ =
∑
i,j∈E

(
(j + 1)
α0
µ0

e−µ0t
pi(j+1)(t; θ0)

pij(t; θ0)
+
j − i
ρ0
− (eµ0t−1)

)
pi(j−1)(t; θ0)πθ0(i)

=
1

α0
µ0

e−µ0t

∑
i,j∈E

(j + 2)
pi(j+2)(t; θ0)

pi(j+1)(t; θ0)
pij(t; θ0)πθ0(i)

+ (1− eµ0t)
∞∑
j=0

∞∑
i=0

pij(t; θ0)πθ0(i) +
1

ρ0

∞∑
i=0

∞∑
j=0

(j + 1− i)pij(t; θ0)πθ0(i)

=: S1 + S2 + S3.

Since πθ0(·) = P(Poi(α0/µ0) ∈ ·) is the invariant distribution under θ0 we
have that

S2 = (1− eµ0t)

∞∑
j=0

∞∑
i=0

pij(t; θ0)πθ0(i)︸ ︷︷ ︸
=πθ0 (j)

= 1− eµ0t
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and

S3 =
1

ρ0

(
1 +

=α0/µ0︷ ︸︸ ︷
∞∑
j=0

j
∞∑
i=0

pij(t; θ0)πθ0(i)︸ ︷︷ ︸
=πθ0 (j)

−

=α0/µ0︷ ︸︸ ︷
∞∑
i=0

iπθ0(i)
∞∑
j=0

pij(t; θ0)︸ ︷︷ ︸
=1

)
=

1

ρ0

so that

Ξ = S1 + 1− eµ0t +
1

ρ0
= S1 +

1 + e−µ0t +ρ0(e−µ0t− eµ0t)

ρ0(1 + e−µ0t)
,

whereby condition (3.9) is translated into

0 6= S1 −
1 + ρ0(1 + e−µ0t)− (1 + e−µ0t +ρ0(e−µ0t− eµ0t))

ρ0(1 + e−µ0t)

= S1 +
e−µ0t−ρ0(1 + eµ0t)

ρ0(1 + e−µ0t)
. (3.10)

Clearly S1 > 0 and since ρ0(1 + e−µ0t) > 0 we get that the right hand side
of (3.10) is positive if e−µ0t ≥ ρ0(1 + eµ0t) = α0

µ0
(eµ0t− e−µ0t), which can be

expressed as e−2µ0t(α0 + µ0) ≥ α0. Taking logarithms on both sides of the
latter inequality we end up with (log(α0 +µ0)− log(α0))/µ0 ≥ 2t, which holds
by assumption. This implies that I(θ0) is invertible and we conclude that
condition (N3) is fulfilled. Its inverse is given by

I(θ0)−1 =
µ0

t ((1 + e−µ0t) ρ0(Ξ− 1)− 1)
(3.11)

×

ρ0(2τ0−µ0t(1−e−µ0t))+
ρ20
µ0t

(Ξ−1)(τ0−µ0t)2

(1−e−µ0t)
2 1 + ρ0

µ0t
(Ξ− 1)(τ0 − µ0t)

1 + ρ0
µ0t

(Ξ− 1)(τ0 − µ0t)
1
µ0t

(Ξ− 1)
(
1− e−µ0t

)2


so that
√
n ((α̂n, µ̂n)− (α0, µ0))

d→ N
(
0, I(θ0)−1

)
, as n→∞.

3.3 Numerical evaluations

We here consider two different sets of parameter pairs, (α0, µ0) = (2, 0.05) and
(α0, µ0) = (0.4, 0.01), each from which we simulate 50 independent sample
paths of the immigration-death process, N(t), on [0, T ], T = 150, N(0) =
0. Thereafter each sample path is sampled at times Tk = kt, t = 1, k =
1, . . . , 150. For each sample path, based on these discrete observations, we

18



estimate (α0, µ0) three times; up to time 50, up to time 100 and up to time
150. Figures 1 and 2 give us normal probability plots of the estimates of our
two sets of parameter pairs based on the simulated trajectories. Furthermore,
Table 1 and Table 2 display the estimated means, biases, standard errors (s.e.),
covariances, skewness (the skewness of a normal distribution is 0) and kurtosis
(the kurtosis of a normal distribution is 3) for each parameter pair, (α0, µ0),
based on its 50 discretely sampled sample paths.

Figure 1: Normal probability plots of the estimates of (α0, µ0) = (2, 0.05)
based on 50 sample paths sampled at times Tk = kt, t = 1, k = 1, . . . , T .
Upper row: The estimates of α0 at final times T = 50 (left), T = 100 (middle)
and T = 150 (right). Lower row: The estimates of µ0 at final times T = 50
(left), T = 100 (middle) and T = 150 (right).

From Figure 1 we can see, not only that the empirical distributions more
or less are centred around the actual parameter values, but also how the tails
stepwise become lighter, approaching the behaviour of a normal distribution.
We can also see how the skewness of the data goes through a stepwise reduction
for every additional 50 time units we utilise in the estimation, which further is
also verified in Table 1. As a measure of the heaviness of the tails we consider
the kurtosis estimates given in Table 1; we see a strong reduction after the first
50 time units, going from something fairly heavy tailed to something a bit more
light tailed than a Gaussian distribution (note that there are robustness issues
with kurtosis estimators based on sample fourth moment estimators). From
Table 1 we also see that already after 50 sampled time units the biases are quite
small. Hence, the consistency of the estimator (α̂n, µ̂n) becomes clear quite

19



Table 1: Estimated moments of the estimator for (α0, µ0) = (2, 0.05), based
on the 50 sample paths sampled at times Tk = kt, t = 1, k = 1, . . . , T .

Mean Bias (%) Std error Skewness Kurtosis

T = 50: α̂T 2.0305 1.5 0.4406 1.3284 5.0738
µ̂T 0.0503 0.6 0.0175 1.1350 4.4391

T = 100: α̂T 2.0605 3.0 0.3729 0.4076 2.6461
µ̂T 0.0511 2.2 0.0112 0.5632 2.6832

T = 100: α̂T 2.0640 3.2 0.2667 0.1881 2.4832
µ̂T 0.0517 3.4 0.0081 0.4088 2.2849

quickly and although the parameter pair (α0, µ0) = (2, 0.05) does not fulfil the
invertibility condition of Corollary 3, (log(α0 + µ0)− log(α0))/µ0 ≥ 2t = 2, it
asymptotically seems to behave Gaussian, thus indicating that the condition
may be improved.

Figure 2: Normal probability plots of the estimates of (α0, µ0) = (0.4, 0.01)
based on 50 sample paths sampled at times Tk = kt, t = 1, k = 1, . . . , T .
Upper row: The estimates of α0 at final times T = 50 (left), T = 100 (middle)
and T = 150 (right). Lower row: The estimates of µ0 at final times T = 50
(left), T = 100 (middle) and T = 150 (right).

As opposed to the previous choice of parameters, the choice (α0, µ0) =
(0.4, 0.01) does fulfil the invertibility condition of Corollary 3. In Figure 2,
just as in Figure 1, we can see that each empirical distribution centres around
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Table 2: Estimated moments of the estimator for (α0, µ0) = (0.4, 0.01), based
on the 50 sample paths sampled at times Tk = kt, t = 1, k = 1, . . . , T .

Mean Bias (%) Std error Skewness Kurtosis

T = 50: α̂T 0.4751 18.8 0.1372 -0.1604 2.1189
µ̂T 0.0137 37.0 0.0080 0.4021 2.3971

T = 100: α̂T 0.4251 5.4 0.1412 1.1873 4.4208
µ̂T 0.0126 26.0 0.0057 0.6537 3.2866

T = 150: α̂T 0.4166 4.2 0.1314 0.1742 2.9146
µ̂T 0.0123 23.0 0.0064 0.6493 2.8343

the actual parameter value and the tails approach those of a normal distribu-
tion (further verified by the estimated means/biases and kurtoses in Table 2).
Regarding the skewness of the estimates, we see from Table 2 that we end up
at values fairly close to 0, i.e. close to that of a Gaussian distribution. Hence,
as expected, also here we see that (α̂n, µ̂n) approaches the actual parameter
pair and at T = 150 we have strong indications of approximate Gaussianity
of (α̂n, µ̂n).

4 Application: The RS-model

We now turn our focus to a spatio-temporal point process with interacting
and size changing marks which here is defined in accordance with [16]. It
is defined on [0,∞) in time and spatially we consider it on some region of
interest, W ⊆ Rd, supplied with the Euclidean metric/norm.

More specifically, the process X(t) = {[Xi,mi(t)] : i ∈ Ωt} can be described
as follows. As time elapses, the arrivals in time of new individuals to W and
the time these individuals live in W are governed by an immigration-death
process, N(t), having parameter θ = (αν(W ), µ) ∈ Θ, where ν(·) denotes
volume in Rd and Θ ⊆ R2

+ is compact. We here denote the (Poisson) arrival
process by B(t) and the death process by D(t) so that N(t) = B(t) − D(t),
where N(0) = 0. Furthermore, upon arrival at time t0i , individual i is assigned
a location Xi ∼ Uni(W ) (thus far, at each fixed time t this constitutes a spatial
Poisson process with intensity α

µ (1− e−µt), restricted to W ) together with an

initial mark, mi(t
0
i ) = m0

i , which is taken either as some fixed positive value (as
will be the case here), or as a value drawn from some suitable distribution ([16]
considers m0

i ∼ Uni(0, ε), ε > 0). When an individual’s (Exp(µ)-distributed)
life time has expired we say that the individual has suffered a natural death.

Once individual i has received its initial mark it starts growing determin-
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istically according to

mi(t) = m0
i +

∫ t

t0i

dmi(s), t0i ≤ t, (4.1)

where

dmi(t) = f(mi(t);ψ)dt−
∑
j∈Ωt
j 6=i

h (mi(t),mj(t),Xi,Xj ;ψ) dt.

Here Ωt = {i ∈ {1, . . . , B(t)} : individual i is alive at time t}, the function
f (mi(t);ψ) determines the individual growth of mark i in absence of com-
petition with other (neighbouring) individuals and h (mi(t),mj(t),Xi,Xj ;ψ)
is a function handling the individual’s spatial interaction with other individu-
als.

In addition to the natural death, an individual can die competitively which
we consider to happen as soon as mi(t) ≤ 0.

Numerous candidates can be thought of for the individual growth function
and the spatial interaction function , depending on the application in question
(see [16] for some examples), and here, motivated by the model’s forestry
applications (see [4]), we will focus on the logistic individual growth function,

f(mi(t);ψ) = λmi(t)

(
1− mi(t)

K

)
, (4.2)

where ψ = (λ,K, c, r) ∈ R2
+×R×R+, λ is the growth rate and K is the upper

bound (carrying capacity) of the individual’s mark size. Further, we choose
to consider the so called area interaction function,

h (mi(t),mj(t),Xi,Xj ;ψ) = c
ν (B [Xi, rmi(t)] ∩B [Xj , rmj(t)])

ν (B [Xi, rmi(t)])
, (4.3)

where B [x, ε] denotes a closed ball in Rd with center x and radius ε > 0.
This non-symmetric soft core interaction function has the effect that smaller
individuals affect larger individuals less than the other way around. Note that
r ≥ 1 implies that the marks are not allowed to intersect whereas r < 1 implies
that some intersection between the marks will be allowed before interaction
takes place. c < 0 implies that individuals gain in size from being close to each
other and c > 0 has the effect that individuals inhibit each other’s growths
once B [Xi, rmi(t)] ∩B [Xj , rmj(t)] 6= ∅.

By the definitions of Ωt and N(t), the number of individuals alive at time
t is given by

|Ωt| = N(t)− C(t) = B(t)−D(t)− C(t), (4.4)
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where |A| denotes the cardinality of the set A and C(t) ≥ 0 denotes the inter-
active death process, i.e. the process counting the total number of individuals
who have suffered a competitive death in the time interval (0, t]. We will
assume that C(T0) = 0 so that |ΩT0 | = 0.

4.1 Estimation

Assume now that we sample the process at times 0 = T0 < . . . < Tn =
T . Then, for each k = 1, . . . , n, this gives rise to a sampled marked point

configuration Xobs(Tk) =
{

[xi,mi(Tk)] : i ∈ Ωobs
Tk

}
.

For clarity we here present the least squares approach which we employ
for the estimation of ψ = (λ,K, c, r) ∈ R2

+×R×R+ and also, connected to it,
the way in which we label individuals as naturally dead. This approach was
originally suggested in [16] wherein it was shown to generate estimates of ψ of
good quality.

Let X̃obs(Tk) =
{
m̃i (Tk+1;ψ,Xobs(Tk)) : i ∈ Ωobs

Tk

}
denote the set of predic-

tions of the actual data marks,
{
mi(Tk+1) : i ∈ Ωobs

Tk

}
, generated by equation

(4.1) under the regime of ψ, based on the configuration Xobs(Tk) (in practise we
employ the simulation algorithm presented in [16] in order to create each pre-
dicted set X̃obs(Tk) from each set Xobs(Tk)). Once having produced X̃obs(Tk), if
m̃i (Tk+1;ψ,X(Tk)) > 0 for an individual i ∈ Ωobs

Tk
but yet i /∈ Ωobs

Tk+1
, this pre-

dicted individual will be treated as having died by natural causes in (Tk, Tk+1).
Our least squares estimates are then found by minimising

S (ψ) :=

n−1∑
k=1

∑
i∈ΩobsTk

1{i ∈ Ωobs
Tk+1
} [m̃i (Tk+1;ψ,Xobs(Tk))−mi (Tk+1)]2 (4.5)

with respect to ψ = (λ,K, c, r) ∈ R2
+ × R × R+, where 1{i ∈ Ωobs

Tk+1
} is an

indicator function being 1 if the actual data individual i is alive at time Tk+1.
Regarding the possible edge effects encountered, [4] suggests some edge

correction methods which manage to reduce biases generated in the estima-
tion of ψ. Furthermore, [4] also deals with numerical issues related to the
minimisation of S (ψ).

The way in which [16] estimates α and µ is to estimate them separately
by approximate ML-estimators which we present here for the purpose of com-
parison. The ML-estimator used to estimate µ in [16] is given by

µ̂0 = nT /

 nT∑
i=1

ti +

mT∑
j=1

sj

 , (4.6)
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where t1, . . . , tnT and s1, . . . , smT denote, respectively, the lifetimes of the nT
individuals who have been labelled as dead from natural causes by time T and
the mT individuals who are still alive at time T . Since the exact arrival times
and death times of the individuals remain unknown, with the only informa-
tion available being the intervals in which arrivals and deaths occur, the exact
lifetimes will remain unknown. The way [16] deals with this is to indepen-
dently draw each birth time occurring in (Tk−1, Tk) from the Uni(Tk−1, Tk)-
distribution while considering the death of an individual to occur at the last
sample time at which the individual has been observed.

Note that when estimating α we actually need only to consider the case
ν(W ) = 1 since we can write α as α′ = αν(W ), find the estimate α̂′ and then
get the estimate of α by considering α̂ = α̂′/ν(W ). The approach of [16] is to
ignore all deaths occurring by setting C(Tk) = D(Tk) = 0, thereby generating
the following ML-estimator

α̂0 =

∣∣∣⋃n
k=0 Ωobs

Tk

∣∣∣
Tn

. (4.7)

However, using this approach has the consequence that we ignore the interplay
between B(t) and C(t) and underestimate α and µ (see [16]). In the case of α
this comes from paying no regard to the deaths, which will reduce the number
of observed individuals.

A more correct, and thus more sensible, way of estimating µ and α, as
opposed to the above approach, is to incorporate the interplay between the
deaths and the arrivals of individuals in the estimation by utilising the actual
multivariate distribution of (N(T1), . . . , N(Tn)) in the ML-estimation, i.e. us-
ing the likelihood approach developed in the previous sections.

In the minimisation of S(ψ), if m̃i (Tk+1;ψ,X(Tk)) ≤ 0 for an individual
i ∈ Ωobs

Tk
, it will be labelled as having died from competition in (Tk, Tk+1) and

the total number of such individuals is denoted by (C(Tk)− C(Tk−1))ψobs and
is used as an estimate of C(Tk) − C(Tk−1). Note that by expression (4.4)
we can write N(Tk) = N(Tk−1) + |ΩTk | − |ΩTk−1

| + C(Tk) − C(Tk−1) where
|ΩT1 | = C(T0) = 0. The observed version of this is given by

Nobs(Tk) = Nobs(Tk−1) + |Ωobs
Tk
| − |Ωobs

Tk−1
|+ (C(Tk)− C(Tk−1))ψobs,

where |Ωobs
T1
| = 0.

When we here estimate θ = (αν(W ), µ) ∈ Θ with our new likeli-
hood approach we use (Nobs(T1), . . . , Nobs(Tn)) as observation of the sampled
immigration-death process, (N(T1), . . . , N(Tn)), and hence the log-likelihood
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is given by

ln(θ) =
n∑
k=1

log p
Nobs(Tk−1)Nobs(Tk)

(Tk − Tk−1;αν(W ), µ) .

5 Discussion

In this paper we have considered the immigration-death process, N(t), and
specifically we have treated the ML-estimation of the parameter pair governing
it, θ = (α, µ) ∈ Θ ⊆ R2

+, when Θ is compact and N(t) is sampled discretely in
time; 0 = T0 < T1 < . . . < Tn, and N(T0) = 0. In order to find the likelihood
structure of this Markov process we have derived its transition probabilities,
and further, we have managed to reduce the likelihood maximisation from a
two-dimensional problem to a one-dimensional problem, where we maximise
the likelihood, L(α, µ) = L(α̂n(µ), µ), over the projection of Θ onto the second
dimension of R2 (µ-axis). Furthermore, by considering N(t) as a Markov jump
process we have managed to show that, under an equidistant sampling scheme,
Tk = kt, t > 0, k = 1, . . . , n, the sequence of estimators, θ̂n(N(T1), . . . N(Tn)),
is consistent and asymptotically Gaussian. The asymptotic normality requires
the invertibility condition (log(α0 + µ0) − log(α0))/µ0 ≥ 2t, where (α0, µ0)
is the underlying parameter pair. These results have been further corrob-
orated through simulations which also indicate that the estimates approach
the actual parameter pair. Furthermore, we see that the empirical distribu-
tion of the estimates show strong indications of Gaussianity, even when the
invertibility condition of Corollary 3 is not fulfilled. An interesting applica-
tion for the immigration-death process is the so called RS-model – a spatio-
temporal point process with time dependent interacting marks in which N(t)
controls the arrivals of new marked points to our region of interest, W ⊆ Rd,
as well as their potential life-times – and we discuss how the ML-estimator,
θ̂n(N(T1), . . . N(Tn)), could be applied to the RS-model.

The motivation for this work comes from the need of improving the esti-
mation of (α, µ) in the RS-model (compared to the estimators given in [16])
and, as a note on future work, one should numerically study the possible
improvement achieved. A further extension is given by adding a Brownian
noise in the mark growth function of the RS-model (i.e. letting the marks
be controlled by dMi(t) = dmi(t) + dBi(t) where the Bi(t)’s are independent
Brownian motions) so that it incorporates uncertainties in the mark sizes.
Having made this extension we hope to find a full likelihood structure for
this SDE-driven RS-model, where L(α, µ) constitutes a part of the likelihood
structure. A further improvement that possibly can be made is to improve
the invertibility condition given in Corollary 3 so that asymptotic normality
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holds for all (α0, µ0) ∈ Θ. Furthermore, in order to become more realistic in
applications, N(t) could be extended by letting the arrival intensity, α, and
the death rate, µ, be non-constant functions of time or in themselves Markov
chains (in the latter case N(t) thus becomes a hidden Markov model) whereby,
possibly, results similar to the ones found in this paper can be established.
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Appendix

A Proofs

Below we give two different proofs of Proposition 1 and then the proof of
Corollary 1.

Proof of Proposition 1. Given the probability generating function (p.g.f.),
GX (s) = E

[
sX
]
, of a discrete random variable X it possible to find P (X = k)

by evaluating

P (X = k) =
1

k!

∂k

∂sk
GX (s)

∣∣∣∣
s=0

. (A.1)

Hence, one possible way of finding pij(t; θ) = P (N(h+ t) = j|N(h) = i), h ≥
0, is to evaluate expression (A.1) for the p.g.f. of (N(h+t)|N(h) = i), G (s) :=
GN(h+t)|N(h)=i (s), which is given by (see [16] or [8], p. 299)

G (s) =
(
1 + (s− 1) e−µt

)i
exp

{
(α/µ)(s− 1)

(
1− e−µt

)}
=

(
1 + (s− 1) e−µt

)i
eρ(s−1), (A.2)

where we for convenience have defined ρ = α
µ (1− e−µt).

Considering the first three derivatives G(k)(s) = ∂kG(s)/∂sk, k = 1, 2, 3,
we get

G(1)(s) = G(s)

(
i

eµt−1 + s
+ ρ

)
(A.3)

G(2)(s) = G(s)

(
i(i− 1)

(eµt−1 + s)2 + 2ρ
i

eµt−1 + s
+ ρ2

)
G(3)(s) = G(s)

(
i(i− 1)(i− 2)

(eµt−1 + s)3 + 3ρ
i(i− 1)

(eµt−1 + s)2 + 3ρ2 i

eµt−1 + s
+ ρ3

)
.

This suggests that

G(j)(s) = G(s)

j∑
k=0

ρk
(
j

k

)
1

(eµt−1 + s)j−k
i!

(i− (j − k))!
(A.4)
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and thus

pij(t; θ) =
G(j)(0)

j!

=

(
1− e−µt

)i
e−ρ

j!

j∑
k=0

ρk
(
j

k

)
1

(eµt−1)j−k
i!

(i− (j − k))!

=
e
−α
µ (1−e−µt)

j!

j∑
k=0

(
α

µ

)k (j
k

)
e−(j−k)µt

(1− e−µt)j−2k−i
i!

(i− (j − k))!
.

Now we prove (A.4) by induction. Assume that (A.4) holds for j and let
a(s) = eµt−1 + s. It follows from (A.3) and (A.4) that

G(j+1)(s) = G(1)(s)

j∑
k=0

ρk
(
j

k

)
1

a(s)j−k
i!

(i− (j − k))!

−G(s)

j∑
k=0

ρk
(
j

k

)
j − k

a(s)j+1−k
i!

(i− (j − k))!

= G(s)

(
i

a(s)
+ ρ

) j∑
k=0

ρk
(
j

k

)
1

a(s)j−k
i!

(i− (j − k))!

−G(s)

j∑
k=0

ρk
(
j

k

)
j − k

a(s)j+1−k
i!

(i− (j − k))!
.
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Thus,

G(j+1)(s)

G(s)
=

j∑
k=0

ρk
(
j

k

)
i− (j − k)

a(s)j+1−k
i!

(i− (j − k))!

+

j∑
k=0

ρk+1

(
j

k

)
1

a(s)j−k
i!

(i− (j − k))!

=

j∑
k=0

ρk
(
j

k

)
1

a(s)j+1−k
i!

(i− (j + 1− k))!

+

j+1∑
k=1

ρk
(

j

k − 1

)
1

a(s)j+1−k
i!

(i− (j + 1− k))!

=

j∑
k=0

ρk
(
j + 1

k

)
1

a(s)j+1−k
i!

(i− (j + 1− k))!

j + 1− k
j + 1

+

j+1∑
k=1

ρk
(
j + 1

k

)
1

a(s)j+1−k
i!

(i− (j + 1− k))!

k

j + 1

=

j+1∑
k=0

ρk
(
j + 1

k

)
1

a(s)j+1−k
i!

(i− (j + 1− k))!

(
j + 1− k
j + 1

+
k

j + 1

)

which implies that (A.4) holds for j+ 1, and therefore completes the proof by
induction.

To describe pij(t; θ) as a sum of products of Poisson densities and Binomial
densities, recall that ρ = α

µ (1− e−µt) and rewrite pij(t; θ) as

pij(t; θ) =

j∑
k=0

ρk e−ρ

k!

e−(j−k)µt

(1− e−µt)j−k−i
k!
(
j
k

)
i!

j!(i− (j − k))!

=

j∑
k=0

ρk e−ρ

k!

(
i

j − k

)(
e−µt

)j−k
(1− e−µt)i−(j−k)

=

j∑
k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k) =

i∧j∑
k=0

f
Poi(ρ)

(j − k)f
Bin(i,e−µt)

(k).
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Also, the first two moments of (N(h+ t)|N(h) = i) are given by

E[N(h+ t)|N(h) = i] = lim
s↑1

G(1)(s) = i e−µt +ρ

E[N2(h+ t)|N(h) = i] = lim
s↑1

[G(1)(s) +G(2)(s)]

= i e−µt +ρ+ i(i− 1) e−2µt +2ρi e−µt +ρ2

= i(i− 1) e−2µt +(1 + 2ρ)i e−µt +ρ2 + ρ.

Proof ∗ of Proposition 1.
Notice first that for any fixed t > 0, N(t) is the result of applying so called

p-thinning (see e.g. [17]) to a Poisson process with intensity α, using thinning
probability 1 − p(t), given N(0) = 0. Since an individual’s arrival time, con-
ditioned on the individual’s arrival during (0, t], is uniformly distributed on
(0, t] and its life-time is Exp(µ)-distributed we get that

p(t) = P (An individual arrives during (0, t] and survives time t)

=

∫ t

0

(
1− FExp(µ)(t− x)

)
fUni(0,t)(x)dx

=
1

t

∫ t

0
e−µ(t−x) dx =

1− e−µt

µt
.

By the properties of thinned Poisson processes (see e.g. [17]) we have that
N(t) ∼ Poi(αtp(t)) = Poi(ρ), ρ = α

µ

(
1− e−µt

)
.

With the marginal distributions of {N(t)}t≥0 at hand (given N(0) = 0)
we now proceed to find pij(t; θ). Given that there are i individuals present at
a given time h > 0, we denote by X the number of these individuals who have
survived (h, h + t]. Clearly X is Bin(i, e−µt)-distributed and by denoting by
Y the number of new individuals arriving in (h, h+ t], which by the previous
argument is Poi(ρ)-distributed and is independent of X, we get pij(t; θ) as the
convolution of the distributions of X and Y , i.e.

pij(t; θ) = P(X + Y = j) =
∞∑
k=0

P(Y = k)P(X = j − k)

=

∞∑
k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k) =

j∑
k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k).

In the same spirit we finally get that the first two moments of (N(h +
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t)|N(h) = i) are given by

E[N(h+ t)|N(h) = i] = E[X + Y ] = i e−µt +ρ

E[N2(h+ t)|N(h) = i] = E[X2] + 2E[X]E[Y ] + E[Y 2]

= i(i− 1) e−2µt +(1 + 2ρ)i e−µt +ρ2 + ρ.

Since the independent random variables X and Y have probability gener-
ating functions GX(t) =

(
1 + (s− 1) e−µt

)i
and GY (t) = eρ(s−1), respectively,

we find the probability generating function to be

Gi (s; θ) = E
[
esN(h+t)

∣∣∣N(h) = i
]

= E
[
es(X+Y )

]
= GX(t)GY (t)

=
(
1 + (s− 1) e−µt

)i
eρ(s−1) .

Proof of Corollary 1. From the proof of Proposition 1 we have that

G(j+1)(s) =

(
i− j
a(s)

+ ρ

)
G(j)(s)

+
j!

a(s)

G(s)

j!

j∑
k=0

kρk
(
j

k

)
1

a(s)j−k
i!

(i− (j − k))!
,

where a(s) = eµt−1 + s, and by noting that

pij(t; θ)k :=

j∑
k=0

kf
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=

j∑
k=1

k
ρk e−ρ

k!

(
i

j − k

)(
e−µt

)j−k
(1− e−µt)i−(j−k)

l=k−1
= ρ

j−1∑
l=0

ρl e−ρ

l!

(
i

j − 1− l

)(
e−µt

)j−1−l
(1− e−µt)i−(j−1−l)

= ρpi(j−1)(t; θ).
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we get that

pi(j+1)(t; θ)

pij(t; θ)
=

j!

(j + 1)!

G(j+1)(0)

G(j)(0)

=
1

j + 1

(
i− j

eµt−1
+ ρ+

j!

G(j)(0)(eµt−1)
pij(t; θ)k

)
=

1

j + 1

(
i− j

eµt−1
+ ρ+

ρ

eµt−1

pi(j−1)(t; θ)

pij(t; θ)

)
=

1

j + 1

(
i− j

eµt−1
+ ρ

)
+

1

j + 1

ρ

eµt−1

pi(j−1)(t; θ)

pij(t; θ)

=
ρ

(j + 1)(eµt−1)

(
i− j
ρ

+ eµt−1 +
pi(j−1)(t; θ)

pij(t; θ)

)
.

B Derivatives

Recall that

pij(t; θ) =
e−

α
µ (1−e−µt)

j!

j∑
k=0

(
α

µ

)k (
j

k

)
e−(j−k)µt

(1− e−µt)j−2k−i
i!

(i− (j − k))!

=

j∑
k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k),

where i, j ∈ E = N, f
Poi(ρ)

(·) is a Poisson density with parameter ρ = α
µ (1− e−µt)

and f
Bin(i,e−µt)

(·) is a Binomial density with parameters i and e−µt. Note further that

pij(t; θ)k2 :=

j∑
k=0

k2f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=

j∑
k=1

k2
ρk e−ρ

k!

(
i

j − k

)(
e−µt

)j−k
(1− e−µt)i−(j−k)

l=k−1
= ρ

j−1∑
l=0

(1 + l)
ρl e−ρ

l!

(
i

j − 1− l

)(
e−µt

)j−1−l
(1− e−µt)i−(j−1−l)

= ρpi(j−1)(t; θ) + ρ

j−1∑
l=1

l
ρl e−ρ

l!

(
i

j − 1− l

)(
e−µt

)j−1−l
(1− e−µt)i−(j−1−l)

k=l−1
= ρpi(j−1)(t; θ) + ρ2

j−2∑
k=0

ρk e−ρ

k!

(
i

j − 2− k

)(
e−µt

)j−2−k
(1− e−µt)i−(j−2−k)

= ρpi(j−1)(t; θ) + ρ2pi(j−2)(t; θ)
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from which we see that

pij(t; θ)k :=

j∑
k=0

kf
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k) = ρpi(j−1)(t; θ).

With τ = (1− e−µt−µt e−µt) we get that

∂

∂α
f
Poi(ρ)

(k) =
k − ρ
α

f
Poi(ρ)

(k)

∂

∂µ
f
Poi(ρ)

(k) =
τ(ρ− k)

(1− e−µt)µ
f
Poi(ρ)

(k)

∂2

∂α∂µ
f
Poi(ρ)

(k) =
τ(ρ− (k − ρ)2)

(1− e−µt)αµ
f
Poi(ρ)

(k)

∂2

∂α2
f
Poi(ρ)

(k) =
ρ2 + k2 − k(1 + 2ρ)

α2
f
Poi(ρ)

(k)

∂2

∂µ2
f
Poi(ρ)

(k) =

(
−2ρτ(1− e−µt) + ρ(1− e−µt)µ2t2 e−µt

(1− e−µt)2µ2

+
ρ2τ2

(1− e−µt)
2
µ2

+ k2
τ2

(1− e−µt)2µ2

+ k
−2ρτ2 + (1− e−µt)2 − µ2t2 e−µt

(1− e−µt)
2
µ2

)
f
Poi(ρ)

(k)

∂

∂µ
f
Bin(i,e−µt)

(j − k) =
−(j − k − i e−µt)µt

(1− e−µt)µ
f
Bin(i,e−µt)

(j − k)

∂2

∂µ2
f
Bin(i,e−µt)

(j − k) =
((j − k)− i e−µt)2µ2t2 + ((j − k)− i)µ2t2 e−µt

(1− e−µt)2µ2

×f
Bin(i,e−µt)

(j − k).

Below we will make use of expression (2.2),

∞∑
j=0

pi(j−2)(t; θ) =

∞∑
j=0

pi(j−1)(t; θ) =

∞∑
j=0

pij(t; θ) = 1

and (by expression (2.2))

∞∑
j=0

jpi(j−1)(t; θ) =

∞∑
j=0

(j + 1)pij(t; θ) = E[N(s+ t)|N(s) = i] + 1 = i e−µt +ρ+ 1.
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B.1 First order derivatives of pij(t; θ) and log pij(t; θ) with bounds

∂pij(t; θ)

∂α
=

j∑
k=0

∂f
Poi(ρ)

(k)

∂α
f
Bin(i,e−µt)

(j − k) =

j∑
k=0

k − ρ
α

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=
pij(t; θ)k − ρpij(t; θ)

α

∂ log pij(t; θ)

∂α
=

1

pij(t; θ)

∂pij(t; θ)

∂α
=

1

α

(
pij(t; θ)k
pij(t; θ)

− ρ
)

=
ρ

α

(
pi(j−1)(t; θ)

pij(t; θ)
− 1

)
(B.1)

∂pij(t; θ)

∂µ
=

j∑
k=0

∂f
Poi(ρ)

(k)

∂µ
f
Bin(i,e−µt)

(j − k) + f
Poi(ρ)

(k)
∂f

Bin(i,e−µt)
(j − k)

∂µ

=

j∑
k=0

(
ρτ

(1− e−µt)µ
− (j − i e−µt)µt

(1− e−µt)µ
− k τ − µt

(1− e−µt)µ

)
× f

Poi(ρ)
(k)f

Bin(i,e−µt)
(j − k)

=
ρτ

(1− e−µt)µ
pij(t; θ)−

(j − i e−µt)µt

(1− e−µt)µ
pij(t; θ)−

τ − µt
(1− e−µt)µ

pij(t; θ)k

∂ log pij(t; θ)

∂µ
=

1

pij(t; θ)

∂pij(t; θ)

∂µ

=
ρτ

(1− e−µt)µ
− (j − i e−µt)µt

(1− e−µt)µ
− τ − µt

(1− e−µt)µ

pij(t; θ)k
pij(t; θ)

=
ρτ

(1− e−µt)µ
− (j − i e−µt)µt

(1− e−µt)µ
− ρ(τ − µt)

(1− e−µt)µ

pi(j−1)(t; θ)

pij(t; θ)
(B.2)

Note first that ρ = αt 1−e
−µt

µt < αt, τ < µt, τ < µ2t2, 0 < τ < 1, pij(t; θ)k ≤ j

and pij(t; θ)k2 ≤ j2 since k ≤ j for all k = 0, . . . , j. Using the triangle inequality and
that α, µ, t, i, j > 0 together with these bounds we get that∣∣∣∣∂pij(t; θ)∂α

∣∣∣∣ ≤ j + ρ

α
<
j

α
+ t

∣∣∣∣∂ log pij(t; θ)

∂α

∣∣∣∣ =
1

α

∣∣∣∣pij(t; θ)kpij(t; θ)
− ρ
∣∣∣∣ ≤ j + ρ

α
<
j

α
+ t (B.3)
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∣∣∣∣∂pij(t; θ)∂µ

∣∣∣∣ < ρτ + |j − i e−µt |µt+ ρ(µt− τ)

(1− e−µt)µ
<

(j + i+ ρ)t

1− e−µt
=

(j + i)t

1− e−µt
+
α

µ

∣∣∣∣∂ log pij(t; θ)

∂µ

∣∣∣∣ < αt2

<1︷ ︸︸ ︷
τ

(µt)2
+
|i e−µt−j|
1− e−µt

t+
t

<1︷︸︸︷
τ/µt+t

1− e−µt
j
pij(t; θ)

pij(t; θ)

<
αt2(

<1︷ ︸︸ ︷
1− e−µt) + (i+ j)t+ 2jt

1− e−µt
<
αt2 + (3j + i)t

1− e−µt
(B.4)

B.2 Second order derivatives of pij(t; θ) and log pij(t; θ) with bounds

The expressions related to ∂2

∂α2 :

∂2pij(t; θ)

∂α2
=

j∑
k=0

ρ2 + k2 − k(1 + 2ρ)

α2
f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=
ρ2pij(t; θ) + pij(t; θ)k2 − pij(t; θ)k(1 + 2ρ)

α2

=
ρ2

α2

(
pi(j−2)(t; θ)− 2pi(j−1)(t; θ) + pij(t; θ)

)
(
∂ log pij(t; θ)

∂α

)2

=
ρ2

α2

(
pi(j−1)(t; θ)

pij(t; θ)
− 1

)2

(B.5)

∂2 log pij(t; θ)

∂α2
=

1

pij(t; θ)

∂2pij(t; θ)

∂α2
−
(
∂ log pij(t; θ)

∂α

)2

∣∣∣∣∂2pij(t; θ)∂α2

∣∣∣∣ < 2
ρ2

α2
= 2

(
1− e−µt

µt

)2

t2 < 2t2

1

pij(t; θ)

∣∣∣∣∂2pij(t; θ)∂α2

∣∣∣∣ ≤ ρ2 + j2 + j(1 + 2ρ)

α2
<

j

α2
+

(
j

α
+ t

)2

∣∣∣∣∂2 log pij(t; θ)

∂α2

∣∣∣∣ ≤ 1

pij(t; θ)

∣∣∣∣∂2pij(t; θ)∂α2

∣∣∣∣+

(
∂ log pij(t; θ)

∂α

)2

<
j

α2
+ 2

(
j

α
+ t

)2

(B.6)
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∞∑
j=0

∂2pij(t; θ)

∂α2
=
ρ2

α2

 ∞∑
j=0

pi(j−2)(t; θ)− 2

∞∑
j=0

pi(j−1)(t; θ) +

∞∑
j=0

pij(t; θ)

 = 0

(B.7)

The expressions related to ∂2

∂α∂µ :

∂2pij(t; θ)

∂α∂µ
=

j∑
k=0

(
− k2 τ − µt

(1− e−µt)αµ
+ k

2ρτ − ρµt− (j − i e−µt)µt

(1− e−µt)αµ

+
−ρ2τ + ρτ

(1− e−µt)αµ
+
ρ (j − i e−µt)µt

(1− e−µt)αµ

)
f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

= − τ − µt
(1− e−µt)αµ

pij(t; θ)k2 +
2ρτ − ρµt− (j − i e−µt)µt

(1− e−µt)αµ
pij(t; θ)k

+
−ρ2τ + ρτ

(1− e−µt)αµ
pij(t; θ) +

ρ (j − i e−µt)µt

(1− e−µt)αµ
pij(t; θ)

=
ρ(τ − µt)

(1− e−µt)αµ

(
pij(t; θ)− pi(j−1)(t; θ)− ρpi(j−2)(t; θ) + ρpi(j−1)(t; θ)

)
+

ρ2τ

(1− e−µt)αµ
(pi(j−1)(t; θ)− pij(t; θ))

+
ρµt

(1− e−µt)αµ
pij(t; θ)−

ρµti e−µt

(1− e−µt)αµ
(pij(t; θ)− pi(j−1)(t; θ))

+
ρµt

(1− e−µt)αµ
(jpij(t; θ)− jpi(j−1)(t; θ))

∂ log pij(t; θ)

∂α

∂ log pij(t; θ)

∂µ

=
ρ

α

(
pi(j−1)(t; θ)

pij(t; θ)
− 1

)(
ρτ

(1− e−µt)µ
− (j − i e−µt)µt

(1− e−µt)µ
− ρ(τ − µt)

(1− e−µt)µ

pi(j−1)(t; θ)

pij(t; θ)

)

=
ρ2
(
pi(j−1)(t;θ)

pij(t;θ)
− 1
)

α
µ (1− e−µt)µ2

(
µt

(
pi(j−1)(t; θ)

pij(t; θ)
− (j − i e−µt)

ρ

)
− τ

(
pi(j−1)(t; θ)

pij(t; θ)
− 1

))

=
ρt

µ

(
pi(j−1)(t; θ)

pij(t; θ)
− 1

)(
pi(j−1)(t; θ)

pij(t; θ)
− (j − i e−µt)

ρ

)
− ρτ

µ2

(
pi(j−1)(t; θ)

pij(t; θ)
− 1

)2

=
t

ρµ

(
pij(t; θ)k
pij(t; θ)

− ρ
)(

pij(t; θ)k
pij(t; θ)

−
(
j − i e−µt

))
− t2

ρ

τ

(µt)2

(
pij(t; θ)k
pij(t; θ)

− ρ
)2

(B.8)

∂2 log pij(t; θ)

∂α∂µ
=

1

pij(t; θ)

∂2pij(t; θ)

∂α∂µ
− ∂ log pij(t; θ)

∂α

∂ log pij(t; θ)

∂µ
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∣∣∣∣∂2pij(t; θ)∂α∂µ

∣∣∣∣ <
µt− τ
(µt)2

(1 + ρ) t2 + ρt2
τ

(µt)2
+
t

µ
+
ti

µ
+
t

µ
j

<

(
(1 + ρ)

µt
− 1

)
t2 +

(1 + j + i)t

µ

<
t

µ
(1 + ρ− µt+ 1 + j + i)

<
t

µ
(2 + αt− µt+ j + i) (B.9)

∣∣∣∣∂ log pij(t; θ)

∂α

∂ log pij(t; θ)

∂µ

∣∣∣∣ < j + αt

α

αt2 + (3j + i)t

1− e−µt

1

pij(t; θ)

∣∣∣∣∂2pij(t; θ)∂α∂µ

∣∣∣∣ <
µt− τ

(1− e−µt)αµ

∣∣∣∣pij(t; θ)k2 − pij(t; θ)kpij(t; θ)

∣∣∣∣+

∣∣∣∣− ρτ

(µt)2
t2
∣∣∣∣

+
| − (j − i e−µt)|µt

(1− e−µt)αµ

pij(t; θ)k
pij(t; θ)

+
τ

(µt)2
t2
(

1 +
pij(t; θ)k
pij(t; θ)

)
+
|j − i e−µt |

µ
t

<
(j2 + j)t

α
+ αt3 +

j(j + i)t

(1− e−µt)α
+ t2(1 + j) +

j + i

µ
t

+
(j + αt)(αt2 + (3j + i)t)

(1− e−µt)α

∣∣∣∣∂2 log pij(t; θ)

∂α∂µ

∣∣∣∣ ≤ 1

pij(t; θ)

∣∣∣∣∂2pij(t; θ)∂α∂µ

∣∣∣∣+

∣∣∣∣∂ log pij(t; θ)

∂α

∂ log pij(t; θ)

∂µ

∣∣∣∣
<

(j2 + j)t

α
+ αt3 +

j(j + i)t

(1− e−µt)α
+ t2(1 + j) +

j + i

µ
t

+
(j + αt)(αt2 + (3j + i)t)

(1− e−µt)α
(B.10)
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∞∑
j=0

∂2pij(t; θ)

∂α∂µ
=

ρ(τ − µt)
(1− e−µt)αµ

 ∞∑
j=0

pij(t; θ)−
∞∑
j=0

pi(j−1)(t; θ)


+

ρ2(τ − µt)
(1− e−µt)αµ

 ∞∑
j=0

pi(j−1)(t; θ)−
∞∑
j=0

pi(j−2)(t; θ)


+

ρ2τ

(1− e−µt)αµ

 ∞∑
j=0

pi(j−1)(t; θ)−
∞∑
j=0

pij(t; θ)


− ρµti e−µt

(1− e−µt)αµ

 ∞∑
j=0

pij(t; θ)−
∞∑
j=0

pi(j−1)(t; θ)


+

ρµt

(1− e−µt)αµ

∞∑
j=0

pij(t; θ)

+
ρµt

(1− e−µt)αµ

( ∞∑
j=0

jpij(t; θ)︸ ︷︷ ︸
=E[N(s+t)|N(s)=i]

−
∞∑
j=0

jpi(j−1)(t; θ)︸ ︷︷ ︸
=1+E[N(s+t)|N(s)=i]

)

= 0 (B.11)

The expressions related to ∂2

∂µ2 :

∂2pij(t; θ)

∂µ2
=

ρ2

α2

j∑
k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

(
k2 (τ − µt)2

+k
(
2µtτ(j − i e−µt)− 2µ2t2(j − i e−µt)

)
+k
(
−2ρτ2 + (1− e−µt)2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)

)
+
(
ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt−2τ)

)
+
((
j − i e−µt

)2
µ2t2 − 2ρµtτ

(
j − i e−µt

)
+ (j − i)µ2t2 e−µt

))

=
ρ2

α2

(
(τ − µt)2 pij(t; θ)k2 + 2µt (τ − µt) (j − i e−µt)pij(t; θ)k

+
(
−2ρτ2 + (1− e−µt)2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)

)
pij(t; θ)k

+
(
ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt−2τ)

)
pij(t; θ)

+
((
j − i e−µt

)2
µ2t2 − 2ρτµt

(
j − i e−µt

)
+ (j − i)µ2t2 e−µt

)
pij(t; θ)

)
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(
∂ log pij(t; θ)

∂µ

)2

=
ρ2
(
τ − (j − i e−µt)µt/ρ− (τ − µt)pi(j−1)(t;θ)

pij(t;θ)

)2
(1− e−µt)2µ2

=
ρ2
(
τ
(

1− pi(j−1)(t;θ)

pij(t;θ)

)
+ µt

(
pi(j−1)(t;θ)

pij(t;θ)
− j−i e−µt

ρ

))2
(1− e−µt)2µ2

=
ρ2τ2

(
1− pi(j−1)(t;θ)

pij(t;θ)

)2
(1− e−µt)2µ2

+
ρ2(µt)2

(
pi(j−1)(t;θ)

pij(t;θ)
− j−i e−µt

ρ

)2
(1− e−µt)2µ2

+
2ρ2τµt

(
1− pi(j−1)(t;θ)

pij(t;θ)

)(
pi(j−1)(t;θ)

pij(t;θ)
− j−i e−µt

ρ

)
(1− e−µt)2µ2

(B.12)

∂2 log pij(t; θ)

∂µ2
=

1

pij(t; θ)

∂2pij(t; θ)

∂µ2
−
(
∂ log pij(t; θ)

∂µ

)2

∣∣∣∣∂2pij(t; θ)∂µ2

∣∣∣∣ < t
(1− e−µt)2

(µt)2

(
µ2t2j2

<1︷ ︸︸ ︷
(µt− τ)2

(µt)2
+2µ2t2j(j + i)

<1︷ ︸︸ ︷
µt− τ
µt

+
( <αt︷︸︸︷

2ρτ2 +

<1︷ ︸︸ ︷
(1− e−µt)2 +

<2αt︷ ︸︸ ︷
2ρµt(1− e−µt) +

<2(1+αt)︷ ︸︸ ︷
2µ2t2 e−µt(1 + ρ)

)
j

+

<1︷︸︸︷
ρ2τ2 +

<αt︷ ︸︸ ︷
ρ(1− e−µt)

<2︷ ︸︸ ︷
(2τ − µ2t2 e−µt)

+ (j + i)2µ2t2 + 2(j + i)

<αt︷︸︸︷
ρτµt+(j + i)

<1︷ ︸︸ ︷
µ2t2 e−µt

)
< t

(
µ2t2

(
j2 + 2j(j + i) + (j + i)2

)
+ αt (7j + 2i+ 2) + 4j + i+ 1

)

1

pij(t; θ)

∣∣∣∣∂2pij(t; θ)∂µ2

∣∣∣∣ < t2
(
j2 + 2(j + i)j +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2
)
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∣∣∣∣∂2 log pij(t; θ)

∂µ2

∣∣∣∣ ≤ 1

pij(t; θ)

∣∣∣∣∂2pij(t; θ)∂µ2

∣∣∣∣+

(
∂ log pij(t; θ)

∂µ

)2

< t2

(
j2 + 2(j + i)j +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2

)

+

(
αt2 + (3j + i)t

1− e−µt

)2

(B.13)
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α2

ρ2

∞∑
j=0

∂2pij(t; θ)

∂µ2
=

= (τ − µt)2
∞∑
j=0

pij(t; θ)k2 + 2µt (τ − µt)
∞∑
j=0

(j − i e−µt) pij(t; θ)k︸ ︷︷ ︸
=ρpi(j−1)(t;θ)

+
(
(1− e−µt)2 − 2ρτ2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)

) ∞∑
j=0

pij(t; θ)k

+
(
ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt−2τ)

) ∞∑
j=0

pij(t; θ)

+

∞∑
j=0

((
j − i e−µt

)2
µ2t2 − 2ρµtτ

(
j − i e−µt

)
+ (j − i)µ2t2 e−µt

)
pij(t; θ)

= (τ − µt)2
∞∑
j=0

(
ρpi(j−1)(t; θ) + ρ2pi(j−2)(t; θ)

)
+ 2µt (τ − µt) ρ

(
E[N(s+ t)|N(s) = i] + 1− i e−µt

)︸ ︷︷ ︸
(2.2)
= ρ(i e−µt +ρ+1−i e−µt)=ρ(ρ+1)

+ ρ
(
−2ρτ2 + (1− e−µt)2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)

)
+ ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt−2τ)

+ µ2t2 E
[
N(s+ t)2 − 2x e−µtN(s+ t) + i2 e−2µt |N(s) = i

]︸ ︷︷ ︸
(2.2)
= i(i−1) e−2µt +(1+2ρ)i e−µt +ρ2+ρ−2x e−µt(i e−µt +ρ)+i2 e−2µt

=(1−e−µt)i e−µt +ρ(ρ+1)

+ − 2ρµtτ
(
E[N(s+ t)|N(s) = i]− i e−µt

)︸ ︷︷ ︸
(2.2)
= i e−µt +ρ−i e−µt=ρ

+ µ2t2 e−µt
(
E[N(s+ t)|N(s) = i]− i

)︸ ︷︷ ︸
(2.2)
= i e−µt +ρ−i=ρ−i(1−e−µt)

= (τ − µt)2 ρ(ρ+ 1) + 2µt (τ − µt) ρ(ρ+ 1)

− 2ρ2τ2 + ρ(1− e−µt)2 + 2ρ2µt(1− e−µt)− 2µ2t2 e−µt ρ(1 + ρ)

+ ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt−2τ) + µ2t2 e−µt(ρ− i(1− e−µt))

+ µ2t2((1− e−µt)i e−µt +ρ(ρ+ 1))− 2ρ2µtτ

= ρ
(
1− e−µt−µt e−µt +2µt

(
ρ+ e−µt

)
− τ
) (

1− e−µt−µt e−µt−τ
)

= ρ
(
τ + 2µt

(
ρ+ e−µt

)
− τ
)

(τ − τ) = 0 (B.14)
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B.3 Third order derivatives of pij(t; θ) and log pij(t; θ) with bounds

The expressions related to ∂3

∂α3 :

Since
∂pij(t;θ)
∂α = ρ

α

(
pi(j−1)(t; θ)− pij(t; θ)

)
, we get

∂3pij(t; θ)

∂α3
=

ρ2

α2

(
∂

∂α
pi(j−2)(t; θ)− 2

∂

∂α
pi(j−1)(t; θ) +

∂

∂α
pij(t; θ)

)
=

ρ3

α3

(
pi(j−3)(t; θ)− 3pi(j−2)(t; θ) + 3pi(j−1)(t; θ)− pij(t; θ)

)
=

ρ3

α3

(
pi(j−3)(t; θ)− 2pi(j−2)(t; θ) + pi(j−1)(t; θ)

)
− ρ

3

α3

(
pi(j−2)(t; θ)− 2pi(j−1)(t; θ) + pij(t; θ)

)
=

ρ

α

(
∂2pij(t; θ)

∂α2
−
∂2pi(j−1)(t; θ)

∂α2

)

∂3 log pij(t; θ)

∂α3
=

1

pij(t; θ)

∂3pij(t; θ)

∂α3
− 3

1

pij(t; θ)

∂2pij(t; θ)

∂α2

∂ log pij(t; θ)

∂α

+

(
∂ log pij(t; θ)

∂α

)3

1

pij(t; θ)

∣∣∣∣∂3pij(t; θ)∂α3

∣∣∣∣ ≤
≤ ρ

α

1

pij(t; θ)

∣∣∣∣∂2pij(t; θ)∂α2

∣∣∣∣+
ρ

α

pi(j−1)(t; θ)

pij(t; θ)

1

pi(j−1)(t; θ)

∣∣∣∣∂2pi(j−1)(t; θ)∂α2

∣∣∣∣
< αt

(
j

α2
+

(
j

α
+ t

)2
)

+
ρ

α

1

ρ

pij(t; θ)k
pij(t; θ)

(
j − 1

α2
+

(
j − 1

α
+ t

)2
)

<
j + (j + αt)2

α
t+

j

α

(
j − 1

α2
+

(
j − 1

α
+ t

)2
)
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∣∣∣∣∂3 log pij(t; θ)

∂α3

∣∣∣∣ ≤
≤ 1

pij(t; θ)

∣∣∣∣∂3pij(t; θ)∂α3

∣∣∣∣+ 3
1

pij(t; θ)

∣∣∣∣∂2pij(t; θ)∂α2

∣∣∣∣ ∣∣∣∣∂ log pij(t; θ)

∂α

∣∣∣∣
+

∣∣∣∣∂ log pij(t; θ)

∂α

∣∣∣∣3
<

j + (j + αt)2

α
t+

j

α

(
j − 1

α2
+

(
j − 1

α
+ t

)2
)

+ 3
j + (j + αt)2

α2

(
j

α
+ t

)
+

(
j

α
+ t

)3

=: B111(α, µ, t, j, i) (B.15)

The expressions related to ∂3

∂α2∂µ :
Since

∂2pij(t; θ)

∂α2
=

ρ2pij(t; θ) + pij(t; θ)k2 − pij(t; θ)k(1 + 2ρ)

α2

=
ρ2

α2

(
pij(t; θ) +

1

ρ2
pij(t; θ)k2 −

1 + 2ρ

ρ2
pij(t; θ)k

)
=

ρ2

α2

(
pi(j−2)(t; θ)− 2pi(j−1)(t; θ) + pij(t; θ)

)
and ∂

∂µ
ρ2

α2 = −2 ρτ
αµ2 we get

∂3pij(t; θ)

∂α2∂µ
=

∂

∂µ

∂2pij(t; θ)

∂α2

= −2
ρτ

αµ2

(
pij(t; θ) +

1

ρ2
pij(t; θ)k2 −

1 + 2ρ

ρ2
pij(t; θ)k

)
+
ρ2

α2

(
∂

∂µ
pi(j−2)(t; θ)− 2

∂

∂µ
pi(j−1)(t; θ) +

∂

∂µ
pij(t; θ)

)

∂3 log pij(t; θ)

∂α2∂µ
=

1

pij(t; θ)

∂3pij(t; θ)

∂α2∂µ
− 2

1

pij(t; θ)

∂2pij(t; θ)

∂α∂µ

∂ log pij(t; θ)

∂α

+
∂ log pij(t; θ)

∂µ

((
∂ log pij(t; θ)

∂α

)2

− ∂2 log pij(t; θ)

∂α2

)

44



1

pij(t; θ)

∣∣∣∣∂pij(t; θ)∂µ

∣∣∣∣ =

∣∣∣∣ ρτ

(1− e−µt)µ
− (j − i e−µt)µt

(1− e−µt)µ
− τ − µt

(1− e−µt)µ

pij(t; θ)k
pij(t; θ)

∣∣∣∣
<

ρτ

(1− e−µt)µ
+

(j + i)µt

(1− e−µt)µ
+

µt+ τ

(1− e−µt)µ
j

< αt+
(j + i+ 1)t

1− e−µt
+ j

1

pij(t; θ)

∂3pij(t; θ)

∂α2∂µ
=

= −2
τ

αµ2

(
ρ+

1

ρ

pij(t; θ)k2

pij(t; θ)
− 1 + 2ρ

ρ

pij(t; θ)k
pij(t; θ)

)
+
ρ2

α2

1

pij(t; θ)

∂

∂µ
pij(t; θ)

+
ρ2

α2

pi(j−2)(t; θ)

pij(t; θ)

1

pi(j−2)(t; θ)

∂

∂µ
pi(j−2)(t; θ)

−2
ρ2

α2

pi(j−1)(t; θ)

pij(t; θ)

1

pi(j−1)(t; θ)

∂

∂µ
pi(j−1)(t; θ)

= −2
τ

αµ2

(
ρ+

1

ρ

pij(t; θ)k2 − pij(t; θ)k
pij(t; θ)

− 2
pij(t; θ)k
pij(t; θ)

)
+
ρ2

α2

1

pij(t; θ)

∂

∂µ
pij(t; θ)

+
1

α2

pij(t; θ)k2 − pij(t; θ)k
pij(t; θ)

1

pi(j−2)(t; θ)

∂

∂µ
pi(j−2)(t; θ)

−2
ρ

α2

pij(t; θ)k
pij(t; θ)

1

pi(j−1)(t; θ)

∂

∂µ
pi(j−1)(t; θ)

1

pij(t; θ)

∣∣∣∣∂3pij(t; θ)∂α2∂µ

∣∣∣∣ <
< 2

t2

α

(
αt+

µ(j2 + j)

α(1− e−µt)
+ 2j

)
+ t2

(
αt+

(j + i+ 1)t

1− e−µt
+ j

)
+
j2 + j

α2

(
αt+

(j + i− 1)t

1− e−µt
+ j − 2

)
+ 2t

j

α

(
αt+

(j + i)t

1− e−µt
+ j − 1

)
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∣∣∣∣∂3 log pij(t; θ)

∂α2∂µ

∣∣∣∣ ≤
≤ 1

pij(t; θ)

∣∣∣∣∂3pij(t; θ)∂α2∂µ

∣∣∣∣+ 2
1

pij(t; θ)

∣∣∣∣∂2pij(t; θ)∂α∂µ

∣∣∣∣ ∣∣∣∣∂ log pij(t; θ)

∂α

∣∣∣∣
+

∣∣∣∣∂ log pij(t; θ)

∂µ

∣∣∣∣
∣∣∣∣∣
(
∂ log pij(t; θ)

∂α

)2

− ∂2 log pij(t; θ)

∂α2

∣∣∣∣∣
< 2

t2

α

(
αt+

µ(j2 + j)

α(1− e−µt)
+ 2j

)
+ t2

(
αt+

(j + i+ 1)t

1− e−µt
+ j

)
+
j2 + j

α2

(
αt+

(j + i− 1)t

1− e−µt
+ j − 2

)
+ 2t

j

α

(
αt+

(j + i)t

1− e−µt
+ j − 1

)
+ 2

(
j

α
+ t

)(
(j2 + j)t

α
+ αt3 +

j(j + i)t+ (j + αt)(αt2 + (3j + i)t)

(1− e−µt)α

+ t2(1 + j) +
j + i

µ
t

)
+
αt2 + (3j + i)t

1− e−µt

(
j

α2
+ 2

(
j

α
+ t

)2
)

=: B112(α, µ, t, j, i) (B.16)

The expressions related to ∂3

∂α∂µ2 :
Since

∂pij(t; θ)

∂α
=
pij(t; θ)k − ρpij(t; θ)

α
=
ρ

α

(
pi(j−1)(t; θ)− pij(t; θ)

)
and

∂2

∂µ2

ρ

α
=
ρ

α

2τ − (µt)2 e−µt

(1− e−µt)µ2

we get

∂3pij(t; θ)

∂α∂µ2
=

(
∂2

∂µ2

ρ

α

)(
pi(j−1)(t; θ)− pij(t; θ)

)
+
ρ

α

(
∂2

∂µ2
pi(j−1)(t; θ)−

∂2

∂µ2
pij(t; θ)

)
=

2τ − (µt)2 e−µt

(1− e−µt)µ2

∂pij(t; θ)

∂α
+
ρ

α

(
∂2

∂µ2
pi(j−1)(t; θ)−

∂2

∂µ2
pij(t; θ)

)

∂3 log pij(t; θ)

∂α∂µ2
=

1

pij(t; θ)

∂3pij(t; θ)

∂α∂µ2
− 2

1

pij(t; θ)

∂2pij(t; θ)

∂α∂µ

∂ log pij(t; θ)

∂µ

+
∂ log pij(t; θ)

∂α

((
∂ log pij(t; θ)

∂µ

)2

− ∂2 log pij(t; θ)

∂µ2

)
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1

pij(t; θ)

∂3pij(t; θ)

∂α∂µ2
=

2τ − (µt)2 e−µt

(1− e−µt)µ2

1

α

(
pij(t; θ)k
pij(t; θ)

− ρ
)

+
1

α

pij(t; θ)k
pij(t; θ)

1

pi(j−1)(t; θ)

∂2

∂µ2
pi(j−1)(t; θ)

− ρ

α

1

pij(t; θ)

∂2

∂µ2
pij(t; θ)

1

pij(t; θ)

∣∣∣∣∂3pij(t; θ)∂α∂µ2

∣∣∣∣ < 2 + e−µt

1− e−µt
t2
(
j

α
+ t

)
+
j

α
t2

(
(j − 1)2 + 2(j + i− 1)(j − 1) +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
(j − 1)

+ α2t2 + αt(µ2t2 + 2) + (j + i− 1)2µ2t2 + 2αt(j + i− 1) + (j + i− 1)µ2t2

)

+ t3

(
j2 + 2(j + i)j +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2

)
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∣∣∣∣∂3 log pij(t; θ)

∂α∂µ2

∣∣∣∣ ≤ 1

pij(t; θ)

∣∣∣∣∂3pij(t; θ)∂α∂µ2

∣∣∣∣+ 2
1

pij(t; θ)

∣∣∣∣∂2pij(t; θ)∂α∂µ

∣∣∣∣ ∣∣∣∣∂ log pij(t; θ)

∂µ

∣∣∣∣
+

∣∣∣∣∂ log pij(t; θ)

∂α

∣∣∣∣
((

∂ log pij(t; θ)

∂µ

)2

+

∣∣∣∣∂2 log pij(t; θ)

∂µ2

∣∣∣∣
)

<
2 + e−µt

1− e−µt
t2
(
j

α
+ t

)
+
j

α
t2

(
(j − 1)2 + 2(j + i− 1)(j − 1) +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
(j − 1)

+ α2t2 + αt(µ2t2 + 2) + (j + i− 1)2µ2t2 + 2αt(j + i− 1) + (j + i− 1)µ2t2

)

+ 2
αt2 + (3j + i)t

1− e−µt

(
(j2 + j)t

α
+ αt3 +

j(j + i)t

(1− e−µt)α
+ t2(1 + j) +

j + i

µ
t

+
(j + αt)(αt2 + (3j + i)t)

(1− e−µt)α

)
+ 2

(
j

α
+ t

)(
αt2 + (3j + i)t

1− e−µt

)2

+ t2
(
j

α
+ 2t

)(
j2 + 2(j + i)j +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2

)
=: B122(α, µ, t, j, i) (B.17)

The expressions related to ∂3

∂µ3 :
Since

∂

∂µ

ρ2

α2
=
ρ2

α2

(
6

µ2
− 8τ e−µt

(1− e−µt)2µ
t− 2(1 + 2 e−µt) e−µt

(1− e−µt)2
t2
)

pij(t; θ)k3 :=

j∑
k=0

k3f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=

j∑
k=1

k3
ρk e−ρ

k!

(
i

j − k

)(
e−µt

)j−k
(1− e−µt)i−(j−k)

l=k−1
= ρ

j−1∑
l=0

(1 + 2l + l2)
ρl e−ρ

l!

(
i

j − 1− l

)(
e−µt

)j−1−l
(1− e−µt)i−(j−1−l)

= ρpi(j−1)(t; θ) + 2ρ2pi(j−2)(t; θ) + ρpi(j−1)(t; θ)k2

= ρpi(j−1)(t; θ) + 3ρ2pi(j−2)(t; θ) + ρ3pi(j−3)(t; θ)
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∂pij(t; θ)km

∂µ
=

j∑
k=0

km
∂

∂µ

(
f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)
)

=

j∑
k=0

km
(
ρτ − (j − i e−µt)µt

(1− e−µt)µ
− k τ − µt

(1− e−µt)µ

)
f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=
ρτ − (j − i e−µt)µt

(1− e−µt)µ
pij(t; θ)km −

τ − µt
(1− e−µt)µ

pij(t; θ)km+1

∣∣∣∣ 1

pij(t; θ)

∂pij(t; θ)km

∂µ

∣∣∣∣ <

(
αt2 +

(3j + i)t

1− e−µt

)
jm,

where m = 0, 1, 2, . . . and pij(t; θ)k0 = pij(t; θ), we get

∂3pij(t; θ)

∂µ3
=

∂

∂µ

∂2pij(t; θ)

∂µ2

=

(
6

µ2
− 8τ e−µt

(1− e−µt)2µ
t− 2(1 + 2 e−µt) e−µt

(1− e−µt)2
t2
)
∂2pij(t; θ)

∂µ2

+
ρ2

α2

(
pij(t; θ)k2

∂

∂µ
(τ − µt)2 + (τ − µt)2 ∂

∂µ
pij(t; θ)k2

+
∂

∂µ
pij(t; θ)k

(
2µt (τ − µt) (j − i e−µt)

−2ρτ2 + (1− e−µt)2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)
)

+pij(t; θ)k
∂

∂µ

(
2µt (τ − µt) (j − i e−µt)

−2ρτ2 + (1− e−µt)2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)
)

+
∂

∂µ
pij(t; θ)

( (
j − i e−µt

)2
µ2t2 − 2ρτµt

(
j − i e−µt

)
+ (j − i)µ2t2 e−µt

+ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt−2τ)
)

+pij(t; θ)
∂

∂µ

( (
j − i e−µt

)2
µ2t2 − 2ρτµt

(
j − i e−µt

)
+ (j − i)µ2t2 e−µt

+ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt−2τ)
))

= A ∂2pij(t;θ)

∂µ2

∂2pij(t; θ)

∂µ2

+Apij(t;θ)k2pij(t; θ)k2 +A ∂
∂µpij(t;θ)k2

∂

∂µ
pij(t; θ)k2 +A ∂

∂µpij(t;θ)k

∂

∂µ
pij(t; θ)k

+Apij(t;θ)kpij(t; θ)k +A ∂
∂µpij(t;θ)

∂

∂µ
pij(t; θ) +Apij(t;θ)pij(t; θ)
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where

A ∂2pij(t;θ)

∂µ2

=

(
6

µ2
− 8τ e−µt

(1− e−µt)2µ
t− 2(1 + 2 e−µt) e−µt

(1− e−µt)2
t2
)

Apij(t;θ)k2 =
ρ2

α2
2t(τ − e−µt)(µt− τ)

A ∂
∂µpij(t;θ)k2

=
ρ2

α2
(τ − µt)2

A ∂
∂µpij(t;θ)k

=
ρ2

α2

(
2µt (τ − µt) (j − i e−µt)

− 2ρτ2 + (1− e−µt)2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)
)

Apij(t;θ)k = 2
ρ2

α2

(
t
(
(j − i e−µt)(τ − µt− µt(τ + e−µt)) + i e−µt µt(τ − µt)

)
+ t e−µt

(
τ − µt− τµt+ µ2t2(1− e−µt)

)
+ ρ

(
τ
(
τ2 + (µt)2 e−µt(−1 + 2 e−µt)

)
+ (µt)3 e−µt(1− e−µt)

)
(1− e−µt)µ

)

A ∂
∂µpij(t;θ)

=
ρ2

α2

( (
j − i e−µt

)2
µ2t2 − 2ρτµt

(
j − i e−µt

)
+ (j − i)µ2t2 e−µt

+ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt−2τ)
)

Apij(t;θ) =
ρ2

α2

(
2t(µt− e−µt(αtτ + ρ(µt)2))(j − i e−µt) + 2µt2i e−µt(µt− ρτ − 1)

+ j(2− µt)µt2 e−µt +2τ3
ρ(1− ρ)

(1− e−µt)µ

− ρ(µt)2 e−µt
τ2(1− 2ρ+ µt) + 2τ e−µt(1 + (µt)2)

(1− e−µt)µ

+ ρ(µt)2 e−µt
(µt e−µt)2 + µt e−µt(2ρτ − (µt)2 e−µt)

(1− e−µt)µ

)

∂3 log pij(t; θ)

∂µ3
=

1

pij(t; θ)

∂3pij(t; θ)

∂µ3
− ∂ log pij(t; θ)

∂µ

((
∂ log pij(t; θ)

∂µ

)2

+ 3
∂2 log pij(t; θ)

∂µ2

)
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∣∣∣∣A ∂2pij(t;θ)

∂µ2

∣∣∣∣ ≤ 6

µ2
+

8t2

µt

τ e−µt

(1− e−µt)2
+ 2(1 + 2 e−µt) e−µt t2

1

(1− e−µt)2

<
6

µ2
+

8t

µ
+

6t2

(1− e−µt)2

∣∣Apij(t;θ)k2 ∣∣ ≤ 2t

<t2︷︸︸︷
ρ2

α2

<1︷ ︸︸ ︷
|τ − e−µt |(µt+

<1︷︸︸︷
τ ) < 2t3(µt+ 1)

∣∣∣A ∂
∂µpij(t;θ)k2

∣∣∣ =

<t2︷︸︸︷
ρ2

α2

<(1+µt)2︷ ︸︸ ︷
(τ − µt)2 < t2(1 + µt)2

∣∣∣A ∂
∂µpij(t;θ)k

∣∣∣ ≤
<t2︷︸︸︷
ρ2

α2

(
2µt

<1+µt︷ ︸︸ ︷
|τ − µt|

<j+i︷ ︸︸ ︷
|j − i e−µt |+2

<αt︷︸︸︷
ρτ2 +

<1︷ ︸︸ ︷
(1− e−µt)2

+ 2 ρµt(1− e−µt)︸ ︷︷ ︸
<αt

+2µ2t2 e−µt(1 + ρ)︸ ︷︷ ︸
<1+αt

)
< t2

(
2µt(j + i) + 4αt+ 1 + 2µ2t2(1 + αt+ j + i)

)∣∣Apij(t;θ)k ∣∣ < 2t3
(
(j + i)(1 + 3µt) + iµt(1 + µt) + (1 + µt)2 + α

(
1 + (µt)2 + µ2t3

))∣∣∣A ∂
∂µpij(t;θ)

∣∣∣ < t2
(
(j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2 + α2 + αt(µ2t2 + 2)

)
∣∣Apij(t;θ)∣∣ < t3

(
2(µt+ (αt+ αt(µt)2))(j + i) + 2µti(µt+ αt+ 1) + j(2 + µt)µt

+2
α(1 + αt)

µ2t
+ αµt2

(
3 + 4αt+ 2µt+ 3(µt)2

))
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1

pij(t; θ)

∣∣∣∣∂3pij(t; θ)∂µ3

∣∣∣∣ ≤
≤ 1

pij(t; θ)

(∣∣∣∣A ∂2pij(t;θ)

∂µ2

∣∣∣∣ ∣∣∣∣∂2pij(t; θ)∂µ2

∣∣∣∣+
∣∣Apij(t;θ)k2 ∣∣ |pij(t; θ)k2 |

+
∣∣∣A ∂

∂µpij(t;θ)k2

∣∣∣ ∣∣∣∣ ∂∂µpij(t; θ)k2
∣∣∣∣+
∣∣∣A ∂

∂µpij(t;θ)k

∣∣∣ ∣∣∣∣ ∂∂µpij(t; θ)k
∣∣∣∣

+
∣∣Apij(t;θ)k ∣∣ |pij(t; θ)k|+ ∣∣∣A ∂

∂µpij(t;θ)

∣∣∣ ∣∣∣∣ ∂∂µpij(t; θ)
∣∣∣∣+
∣∣Apij(t;θ)∣∣ |pij(t; θ)|

)

<

(
6

µ2
+

8t

µ
+

6t2

(1− e−µt)2

)
t2
(
j2 + 2(j + i)j +

(
4αt+ 1 + 2µ2t2(1 + αt)

)
j

+α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2
)

+2t3(µt+ 1)j2

+t2(1 + µt)2
(
αt2 +

(3j + i)t

1− e−µt

)
j2

+t2
(
2µt(j + i) + 4αt+ 1 + 2µ2t2(1 + αt+ j + i)

)(
αt2 +

(3j + i)t

1− e−µt

)
j

+2t3
(
(j + i)(1 + 3µt) + iµt(1 + µt) + (1 + µt)2 + α

(
1 + (µt)2 + µ2t3

))
j

+t2
(
(j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2 + α2 + αt(µ2t2 + 2)

)(
αt2 +

(3j + i)t

1− e−µt

)
+t3

(
2(µt+ (αt+ αt(µt)2))(j + i) + 2µti(µt+ αt+ 1) + j(2 + µt)µt

+2
α(1 + αt)

µ2t
+ αµt2

(
3 + 4αt+ 2µt+ 3(µt)2

))
=: A

1
pij(t;θ)

∣∣∣∣ ∂3pij(t;θ)∂µ3

∣∣∣∣
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∣∣∣∣∂3 log pij(t; θ)

∂µ3

∣∣∣∣ ≤
≤ 1

pij(t; θ)

∣∣∣∣∂3pij(t; θ)∂µ3

∣∣∣∣+

∣∣∣∣∂ log pij(t; θ)

∂µ

∣∣∣∣
((

∂ log pij(t; θ)

∂µ

)2

+ 3

∣∣∣∣∂2 log pij(t; θ)

∂µ2

∣∣∣∣
)

< A
1

pij(t;θ)

∣∣∣∣ ∂3pij(t;θ)∂µ3

∣∣∣∣ + 4

(
αt2 + (3j + i)t

1− e−µt

)3

+ 3t2
(
αt2 + (3j + i)t

1− e−µt

)(
j2 + 2(j + i)j +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2

)
=: B222(α, µ, t, j, i) (B.18)

C Derivation of the Fisher information matrix

See Section 3.2 for definitions.
The Fisher information matrix at θ0 associated with {q(θ; i, ·) : θ ∈ Λθ0} is given

by

I(θ0; i) =

(
I11(θ0; i) I12(θ0; i)
I21(θ0; i) I22(θ0; i)

)
.

By expression (2.2) we have that

∞∑
j=0

(j − i e−µt)pi(j−1)(t; θ0) = 1 + Eθ0 [N(s+ t)|N(s) = i]− i e−µ0t = 1 + ρ0

∞∑
j=0

(j − i e−µt)pij(t; θ0) = Eθ0 [N(s+ t)|N(s) = i]− i e−µ0t = ρ0

∞∑
j=0

(j − i e−µt)2pij(t; θ0) = Eθ0 [N(s+ t)2|N(s) = i] + i2 e−2µ0t

−2i e−µ0t Eθ0 [N(s+ t)|N(s) = i]

= (1− e−µ0t)i e−µ0t +ρ20 + ρ0,

where Eθ0 [·] denotes expected value under θ0 = (α0, µ0). Using these results and by
considering expressions (B.5), (B.8) and (B.12), we get that the entries of I(θ0; i) are
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given by

I11(θ0; i) =
∑
j∈E

(D1 log q(θ0; i, j))
2
q(θ0; i, j) (C.1)

=

∞∑
j=0

ρ20
α2
0

(
pi(j−1)(t; θ0)

pij(t; θ0)
− 1

)2

pij(t; θ0)

=
ρ20
α2
0

 ∞∑
j=0

(
pi(j−1)(t; θ0)

)2
pij(t; θ0)

− 2

∞∑
j=0

pi(j−1)(t; θ0) +

∞∑
j=0

pij(t; θ0)


=

ρ20
α2
0

 ∞∑
j=0

(
pi(j−1)(t; θ0)

)2
pij(t; θ0)

− 1

 ,

I12(θ0; i) = I21(θ0; i) =
∑
j∈E

(D1 log q(θ0; i, j)) (D2 log q(θ0; i, j)) q(θ0; i, j) (C.2)

=
ρ0t

µ0

∞∑
j=0

(
pi(j−1)(t; θ0)

pij(t; θ0)
− 1

)(
pi(j−1)(t; θ0)− (j − i e−µ0t)

ρ0
pij(t; θ0)

)

− ρ0τ0
µ2
0

∞∑
j=0

(
pi(j−1)(t; θ0)

pij(t; θ0)
− 1

)2

pij(t; θ0)

=
ρ0t

µ0

 ∞∑
j=0

(pi(j−1)(t; θ0))2

pij(t; θ0)
−
∞∑
j=0

pi(j−1)(t; θ0)


− t

µ0

∞∑
j=0

(
j − i e−µ0t

)
pi(j−1)(t; θ0)

+
t

µ0

∞∑
j=0

(
j − i e−µ0t

)
pij(t; θ) +

ρ0τ0
µ2
0

∞∑
j=0

(
pi(j−1)(t; θ0)− pij(t; θ0)

)

− ρ0τ0
µ2
0

 ∞∑
j=0

(pi(j−1)(t; θ0))2

pij(t; θ0)
−
∞∑
j=0

pi(j−1)(t; θ0)


=

(
ρ0t

µ0
− ρ0τ0

µ2
0

) ∞∑
j=0

(pi(j−1)(t; θ0))2

pij(t; θ0)
− 1


+

t

µ0

(
Eθ0 [N(s+ t)|N(s) = i]− i e−µ0t

)
− t

µ0

(
1 + Eθ0 [N(s+ t)|N(s) = i]− i e−µ0t

)
=

ρ0(µ0t− τ0)

µ2
0

 ∞∑
j=0

(pi(j−1)(t; θ0))2

pij(t; θ0)
− 1

− t

µ0
,
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I22(θ0; i) =
∑
j∈E

(D2 log q(θ0; i, j))
2
q(θ0; i, j) (C.3)

=
ρ20τ

2
0

(1− e−µ0t)2µ2
0

∞∑
j=0

(
pi(j−1)(t; θ0)

pij(t; θ0)
− 1

)2

pij(t; θ0)

+
ρ20(µ0t)

2

(1− e−µ0t)2µ2
0

∞∑
j=0

(
pi(j−1)(t; θ0)

pij(t; θ0)
− j − i e−µ0t

ρ0

)2

pij(t; θ0)

− 2ρ20τ0µ0t

(1− e−µ0t)2µ2
0

∞∑
j=0

(
pi(j−1)(t; θ0)

pij(t; θ0)
− 1

)(
pi(j−1)(t; θ0)

pij(t; θ0)
− j − i e−µ0t

ρ0

)
pij(t; θ0)

=
α2
0τ

2
0

µ4
0

 ∞∑
j=0

(pi(j−1)(t; θ0))2

pij(t; θ0)
− 1


+
α2
0(µ0t)

2

µ4
0

( ∞∑
j=0

(pi(j−1)(t; θ0))2

pij(t; θ0)
− 2

ρ0

∞∑
j=0

(j − i e−µ0t)pi(j−1)(t; θ0)︸ ︷︷ ︸
=1+(1+2/ρ0)

)

+
α2
0(µ0t)

2

µ4
0

1

ρ20

∞∑
j=0

(j − i e−µ0t)2pij(t; θ0)

−2α2
0τ0µ0t

µ4
0

 ∞∑
j=0

(pi(j−1)(t; θ0))2

pij(t; θ0)
− 1


+

2α2
0τ0µ0t

µ4
0

1

ρ0

 ∞∑
j=0

(j − i e−µ0t)pi(j−1)(t; θ0)−
∞∑
j=0

(j − i e−µ0t)pij(t; θ0)


=

α2
0

(
τ20 − 2τ0µ0t+ (µ0t)

2
)

µ4
0

 ∞∑
j=0

(pi(j−1)(t; θ0))2

pij(t; θ0)
− 1

+
2α2

0τ0µ0t

µ4
0

1

ρ0

+
α2
0(µ0t)

2

µ4
0

(
(1− e−µ0t)i e−µ0t +ρ0(ρ0 + 1)

ρ20
− 1− 2

ρ0

)

=
α2
0 (τ0 − µ0t)

2

µ4
0

 ∞∑
j=0

(pi(j−1)(t; θ0))2

pij(t; θ0)
− 1

+
α0t

2 e−µ0t

µ0ρ0
i+

α2
0µ0t(2τ0 − µ0t)

ρ0µ4
0

.
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