
                         

 

 
 

Asymptotic risks of Viterbi segmentation 
 
 

Kristi Kuljus and Jüri Lember 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Research Report 

Centre of Biostochastics 

 

Swedish University of                       Report 2010:02                   

Agricultural Sciences                     ISSN 1651-8543 



Asymptotic risks of Viterbi segmentation

Kristi Kuljus

Centre of Biostochastics
Swedish University of Agricultural Sciences, 901 83 Ume̊a, Sweden
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Abstract

We consider the maximum likelihood (Viterbi) alignment of a hidden Markov
model (HMM). In an HMM, the underlying Markov chain is usually hidden
and the Viterbi alignment is often used as the estimate of it. This approach
will be referred to as the Viterbi segmentation. The goodness of the Viterbi
segmentation can be measured by several risks. In this paper, we prove the
existence of asymptotic risks. Being independent of data, the asymptotic risks
can be considered as the characteristics of the model that illustrate the long-run
behavior of the Viterbi segmentation.
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1 Introduction

1.1 Notation

Let Y = {Yt}∞t=−∞ be a double-sided stationary MC with states S = {1, . . . , |S|} and
irreducible aperiodic transition matrix

(
P (i, j)

)
. Let X = {Xt}∞t=−∞ be a double-

sided process such that: 1) given {Yt} the random variables {Xt} are conditionally
independent; 2) the distribution of Xj depends on {Yt} only through Yj . The process
X is sometimes called a hidden Markov process (HMP) and the pair (Y,X) is referred
to as a hidden Markov model (HMM). The name is motivated by the assumption that
the process Y (sometimes called the regime) is non-observable. The distributions
Ps := P(X1 ∈ ·|Y1 = s) are called emission distributions. We shall assume that the
emission distributions are defined on a measurable space (X ,B), where X is usually
Rd and B is the Borel σ-algebra. Without loss of generality we shall assume that
the measures Ps have densities fs with respect to some reference measure µ. Our
notation differs from the one used in the HMM literature, where usually X stands
for the regime and Y for the observations. Since our study is mainly motivated by
statistical learning, we would like to be consistent with the notation used there and
keep X for the observations and Y for the latent variables.

Given a set A and integers m and n, m < n, we shall denote any m − n + 1-
dimensional vector with all the components in A by anm := (am, . . . , an). When
m = 1, it will be often dropped from the notation and we write an ∈ An.

HMMs are widely used in various fields of applications, including speech recogni-
tion [22, 10], bioinformatics [15, 7], language processing [21], image analysis [20] and
many others. For general overview about HMMs, we refer to [4] and [8].

1.2 Segmentation

The present paper deals with the asymptotics of the Viterbi segmentation. The seg-
mentation problem consists of estimating the unobserved realization of the underlying
Markov chain Y1, . . . , Yn given n observations xn = x1, . . . , xn from a hidden Markov
model. Formally, we are looking for a mapping

g : Xn → Sn

called a classifier, that maps every sequence of observations into a state sequence (see
[13] for details). For finding the best g, it is natural to set to every state sequence
sn ∈ Sn into correspondence a measure of goodness of sn, referred to as the risk
of sn. Let us denote the risk of sn for a given xn by R(sn|xn). The solution of
the segmentation problem is then a state sequence with the minimum risk. In the
framework of pattern recognition theory the risk is specified via a loss function

L : Sn × Sn → [0,∞],
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where L(an, bn) measures the loss when the actual state sequence is an and the prog-
nose is bn. For any state sequence sn ∈ Sn the risk is then

R(sn|xn) := E[L(Y n, sn)|Xn = xn] =
∑
an∈Sn

L(an, sn)P(Y n = an|Xn = xn). (1.1)

The most popular loss function is the so-called symmetric loss L∞ defined as

L∞(an, bn) =

{
1, if an 6= bn;
0, if an = bn.

(1.2)

We shall denote the corresponding risk by R∞. With this loss, R∞(sn|xn) = P(Y n 6=
sn|Xn = xn), thus the minimizer of R∞(·|xn) is a sequence with maximum posterior
probability, called the Viterbi alignment. The name is inherited from the dynamic pro-
gramming algorithm (Viterbi algorithm) used for finding it. Let v stand for the Viterbi
alignment, i.e. v(xn) = arg maxsn p(s

n|xn), where p(sn|xn) = P(Y n = sn|Xn = xn).
Obviously, the Viterbi alignment is not necessarily unique. The Viterbi alignment
minimizes also the following risk:

R̄∞(sn|xn) := − 1

n
ln p(sn|xn). (1.3)

The log-likelihood based risk (1.3) is often preferable to use since it allows various
generalizations, see (1.6).

Another popular classifier is based on the point-wise loss function

L1(an, bn) =
1

n

n∑
t=1

l(at, bt), (1.4)

where l(at, bt) ≥ 0 is the loss of classifying the t-th symbol at as bt. Typically, for
every state s, l(s, s) = 0. Let us denote the corresponding risk by R1(sn|xn). It is
not hard to see that

R1(sn|xn) =
1

n

n∑
t=1

Rt1(st|xn),

where Rt1(s|xn) :=
∑
a∈S l(a, s)pt(a|xn) and pt(a|xn) := P(Yt = a|Xn = xn). Most

frequently l(s, s′) = I{s6=s′} (symmetric l), then R1(sn|xn) just counts the expected
number of misclassified symbols given that the data are xn and the sequence sn is
used for segmentation. For that l,

R1(sn|xn) = 1− 1

n

n∑
t=1

pt(st|xn). (1.5)

The minimizer of (1.5) over all the possible state sequences is called the pointwise
maximum a posteriori (PMAP) alignment. The Viterbi and the PMAP-classifier –
the so-called standard classifiers – are by far the two most popular classifiers used in
practice.
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We shall also consider the risk

R̄1(sn|xn) := − 1

n

n∑
t=1

ln pt(st|xn).

The risks R1 and R̄1 are closely related. Minimizing (1.5) over all possible state
sequences is clearly equivalent to minimizing R̄1, but this is not necessarily so for
restricted minimization. The importance of R̄1 and R̄∞ becomes apparent in [13],
where the following penalized R̄1-risk is considered:

R̄C(sn|xn) := R̄1(sn|xn) + CR̄∞(sn|xn). (1.6)

Here C ≥ 0 is a given regularization constant. The risk R̄C naturally interpolates
between the two standard alignments: for C = 0 the minimizer of (1.6) is the PMAP-
alignment, and it is not hard to see that for C big enough the minimizer of (1.6) is the
Viterbi alignment. Obviously, the likelihood of the minimizer of (1.6) increases with
C as well as the R̄1-risk. Similar properties hold of course for the minimizer of the risk
R1(sn|xn)+CR̄∞(sn|xn), but the risk R̄C has a nice easily understandable additional
interpretation. Recall that the PMAP-alignment maximizes the expected number of
correctly estimated sates. Unfortunately, it might have zero likelihood and as already
mentioned by Rabiner in his seminal tutorial [22], a possible solution to that problem
might be the alignment that maximizes the expected number of correctly estimated
pairs or triplets of adjacent states rather than the expected number of correct states.
In [13] it was shown that for integer C, minimizing the risk R̄C is closely related
to maximizing the expected number of correctly estimated tuples of C + 1 adjacent
states.

In [13] it was also shown that the minimization of R̄C(sn|xn) as well as of
R1(sn|xn) + CR̄∞(sn|xn) can be carried out by a dynamic programming algorithm
that is similar to the Viterbi algorithm and easy to implement.

1.3 Asymptotic risks and the organization of the paper

Given a classifier g, the quantity R(g, xn) := R(g(xn)|xn) measures the goodness
of it when applied to the observations xn. When g is optimal in the sense of
risk, then R(g, xn) = minsn R(sn|xn) =: R(xn). We are interested in the ran-
dom variables R(g,Xn). In this paper we shall show that under fairly general
assumptions on an HMM, the random variables R1(v,Xn), R̄1(v,Xn) as well as
R̄∞(Xn) := R̄∞(v,Xn) all converge to constant limits almost surely (Theorems 5,
6, 7, respectively). The convergence of R̄∞(v,Xn) and R̄1(v,Xn) obviously implies
the convergence of R̄C(v,Xn). In [16] it was shown that under the same assumptions
R1(Xn) = minsn R1(sn|Xn) converges to a constant limit, here we prove this for
R̄1(Xn) = minsn R̄1(sn|Xn) (Corollary 3).

The limits – asymptotic risks – are constants that all depend on the model and
characterize the goodness of the segmentation based on the Viterbi alignment. If, for
example, R1 is the limit ofR1(v,Xn) andR∗1 is the limit ofR1(Xn), then the difference
R1−R∗1 shows how well the Viterbi alignment performs the segmentation in the sense
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of R1-risk in the long run in comparison to the best possible alignment. If R1 is defined
as in (1.5), then for n big enough the Viterbi alignment makes approximatively nR1

classification errors, while the best alignment in this case – the PMAP-alignment –
makes approximatively nR∗ errors. Since the model is known, the asymptotic risks
could in principle be found theoretically, but the convergence theorems show that
they could also be found by simulations.

Of course, when measuring the goodness of a segmentation with the R1-risk, the
quantity of actual interest is the so-called empirical (or true) risk

R1(g, Y n, Xn) :=
1

n

n∑
t=1

l(Yt, gt(X
n)),

where gt(X
n) is the t-th element of the n-dimensional vector g(Xn). Since Y n is

hidden, the empirical risk R1(g, Y n, Xn) cannot be found, but Theorem 5 implies
that for the Viterbi alignment the empirical risk converges to R1 almost surely. As-
suming that the asymptotic risk R1 has been found (by independent simulations,
for example), one would now be interested in a large deviation type upper bound to
P(R1(v, Y n, Xn)−R1 > ε). In [9] it has been shown that under the same assumptions
as in the present paper, the following large deviation principle holds:

lim
n

1

n
ln P(R1(v, Y n, Xn) > ε+R1) = −I(R1 + ε), (1.7)

where I is a rate function and ε is small enough. The authors of [9] do not state the
exact bound to the probability P(R1(v, Y n, Xn) − R1 > ε), but it could be derived
from the proof. We would like to draw the reader’s attention to the differences
with supervised learning. In supervised learning (pattern recognition) the model is
unknown, but the variables Y n are observable, thus the empirical risk R1(g, Y n, Xn)
for any classifier could be calculated. The main object of interest then is the unknown
asymptotic risk and the large deviation inequalities are used to estimate the unknown
asymptotic risk by the known empirical risk. In our setting the data Y n are hidden,
but the model, and therefore the asymptotic risk, is known, so that the true risk can
be used to estimate the unknown empirical risk.

The present paper deals mostly with convergence of the risks of Viterbi alignments.
These results are all largely based on the regenerativity of the Viterbi process. The
Viterbi process {Vt}∞t=1 is an S-valued stochastic process that is in a sense the limit
of the random vectors v(Xn) as n grows. The existence of the Viterbi process is
crucial and not obvious; our analysis is based on the results in [19, 18, 14], where the
Viterbi process is constructed piecewisely. The piecewise construction under general
assumptions is rather technical (see [19, 14]). However, when it is performed, the
regenerativity of the Viterbi process as well as the ergodicity of the double-sided
Viterbi process easily follow. The corresponding results and the construction of the
Viterbi process are introduced in Subsection 2.2. The references to necessary results
from the theory of regenerative processes are given in Subsection 2.1. We are following
the coupling approach developed by Thorisson in [23]. One of the main instruments
we are going to use is that any regenerative process can be successfully coupled with a
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stationary and ergodic regenerative process (Theorem 1). With a successful coupling,
a general pathwise limit theorem for the Viterbi alignment (Theorem 3) can be proven.
This is the main preliminary result and it can be used for many other purposes besides
proving the convergence of risks.

Section 3 deals with the convergence of the R1-risk. Section 4 deals with the
convergence of the R̄1-risk and in Section 5, the convergence of the log-likelihood
(R̄∞-risk) is proven.

Since the regenerativity of the PMAP-process (the analogue of the Viterbi process
for the PMAP-alignment) is not proven, the regenerativity-based methods cannot be
used for the long-run analysis of PMAP-alignments. However, as shown in [16], the
convergence of R1(Xn) (the R1-risk of the PMAP-alignment) can be proven with a
completely different method based on the exponential forgetting of smoothing prob-
abilities. The exponential forgetting inequalities are introduced in Subsection 2.3, in
Section 4 we show that they also imply the convergence of R̄∞(Xn) (the R̄1-risk of
the PMAP-alignment).

From the discussion above it follows that there is no universal method known yet
to prove the convergence of general risks and every optimal alignment needs a special
treatment. For example, the convergence of R̄C(Xn) (as well as of several other more
general risks introduced in [13]) has not yet been proven, although it is reasonable to
conjecture that it holds. Moreover, we conjecture that the dynamic programming al-
gorithm for finding the minimizer of R̄C-risk together with the exponential smoothing
could be used to find the R̄C-optimal alignment process piecewisely. If this is true,
then the alignment process is regenerative and the results and methods in the present
paper can be applied to many other optimal alignments.

2 Preliminary results

2.1 Regenerativity

Let Z = {Zt}∞t=1 in (Ω,F ,P) be a Z := Rd-valued classical regenerative process with
respect to the renewal process S = {St}∞t=0 (see, e.g. Chapter 10 in [23]). Following the
notation in [23], we shall denote the regenerative process by (Z, S). Let T1 := S1−S0.
The regenerative process (Z, S) is positive recurrent if ET1 < ∞ and aperiodic if T1
is aperiodic, i.e. P(T1 ∈ aN) < 1 for every a > 1.

A pair (Z ′, S′) is a version of the regenerative process (Z, S) if it is also a regen-
erative process and

θS0
(Z, S)

D
= θS′0(Z ′, S′),

where θt is a shift operator: θt(x1, x2, . . .) = (xt+1, xt+2, . . .) and
D
= means equal in

law. The version (Zo, So) := θS0
(Z, S) of (Z, S) is a zero-delayed regenerative process.

Thus, So0 = T1. Recall that (Z, S) is stationary if θt(Z, S) has the same distribution
as (Z, S). If (Z, S) is positive recurrent regenerative, then there exists a stationary
version (Z∗, S∗) of this process such that the distribution of the delay length S∗0 is
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given by

P(S∗0 = k) =
1

ET1
P(T1 > k), k ≥ 0,

and for every σ(Z∞)-measurable function g : Z∞ → R the following inequality holds:

Eg(Z∗1 , Z
∗
2 , . . .) =

1

ET1
E
[ T1−1∑
t=0

g(θt(Z
o))
]
, (2.1)

see, e.g. Theorem 2.1 and 2.2 of Chapter 10 in [23] or Theorem 6.1 in [11].
Recall that a stochastic process Z = {Zt}∞t=1 is mixing in the sense of ergodic

theory if for every A,B ∈ σ(Z∞) (cylindrical σ-algebra) the following holds:

lim
t→∞

|P(θtZ ∈ A,Z ∈ B)−P(θtZ ∈ A)P(Z ∈ B)| = 0, (2.2)

see, e.g. [6]. Recall also that a sub-σ-algebra of F is called trivial if its elements have
probability 1 or 0. In the following we consider two σ-algebras: the tail-σ-algebra
T := ∩∞t=1θ

−1
t (σ(Z∞)) and the σ-algebra of shift-invariant sets I := {A ∈ σ(Z∞) :

θ−1t A = A}. A stationary I-trivial process is ergodic. Since I ⊆ T (see Section 5.1
in [23]), a stationary T -trivial process (sometimes also called regular) is also ergodic.
The following version of Theorem 3.3 of Chapter 10 in [23] states that an aperiodic
positive recurrent regenerative process can be successfully coupled with a stationary
ergodic process.

Theorem 1. Let (Z, S) be an aperiodic and positive recurrent regenerative process.
Let (Z∗, S∗) be a stationary version of it. Then the following statements hold:

a) The space (Ω,F ,P) can be extended to support a finite random time T and a copy
Z ′ of Z∗ such that (Z,Z ′, T ) is a successful exact coupling of Z and Z∗, i.e.

θTZ = θTZ
′, where Z ′

D
= Z∗.

b) The processes Z and Z ′ are T -trivial.

Proof. The process Z is aperiodic, which means that T1 is a lattice with span 1. Since
(Z, S) and (Z∗, S∗) are discrete, the random variables S0 and S∗0 are Z-valued. So the
assumptions of Theorem 3.3 of Chapter 10 in [23] are fulfilled. The claim a) is claim
a) of that theorem, the T -triviality of Z is claim d) of that theorem. Finally, the
process Z ′, being a stationary version of Z, is also an aperiodic regenerative process
with S′0 being Z-valued. Hence it satisfies the same assumptions and is therefore also
T -trivial.

Corollary 1. Let (Z, S) be an aperiodic and positive recurrent regenerative pro-
cess and let (Z∗, S∗) be a stationary version of it. Let g : Z∞ → R be such that
E|g(Z∗1 , Z

∗
2 , . . .)| <∞. Then

1

n

n∑
t=1

g(Zt, Zt+1, . . .)→ E[g(Z∗1 , Z
∗
2 , . . .)] a.s. and in L1. (2.3)
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Proof. Let us extend the space (Ω,F ,P) so that the statements of Theorem 1 hold.
Then the process Z ′ is stationary and ergodic having the same distribution as Z∗. By
Birkhoff’s ergodic theorem then,

1

n

n∑
t=1

g(Z ′t, Z
′
t+1, . . .)→ E[g(Z ′1, Z

′
2, . . .)] = E[g(Z∗1 , Z

∗
2 , . . .)] a.s. and in L1. (2.4)

Since the original process Z can be successfully coupled with Z ′, it holds for almost
every realization of Z and Z ′ that they differ at the finite beginning only. Since for
a pathwise limit the beginning does not matter, we immediately get the almost sure
convergence of (2.3). The L1-convergence follows from applying Scheffe’s lemma to
g+(Zt, Zt+1, . . .) and g−(Zt, Zt+1, . . .) separately.

Remark: If (Z, S) is positive recurrent but not aperiodic, then Theorem 1 cannot be
applied. However, using Theorem 2.2 of [23] and noting that aperiodicity is not used in
its proof, a similar result can be obtained for shift-coupling instead of exact coupling.
The process Z ′ can be shown to be I-trivial and hence ergodic, thus Corollary 1 still
holds. In this paper we consider only aperiodic regenerative processes.

If f : Z → R is measurable, then the convergence (2.3) together with (2.1) yields

1

n

n∑
t=1

f(Zt)→ Ef(Z∗1 ) =
1

ET1
E
[ T1∑
t=1

f(Zot )
]

=
1

ET1
E
[ S1∑
t=S0+1

f(Zt)
]

(2.5)

a.s. and in L1.

2.2 Infinite Viterbi alignment

2.2.1 One-sided process

Definition 1. Let for every n, gn : Xn → Sn be a classifier. We say that the sequence
{gn} of classifiers can be extended to infinity, if there exists a function

g : X∞ → S∞ (2.6)

such that for almost every realization x∞ ∈ X∞ the following statement holds: for
every k ∈ N there exists m ≥ k (depending on x∞) such that for every n ≥ m the first
k elements of gn(xn) are the same as the first k elements of g(x∞), i.e. gn(xn)i =
g(x∞)i, i = 1, . . . , k. The function g will be referred to as an infinite alignment.

The existence of an infinite alignment is in general not trivial. It often happens
that adding one more observation xn+1 changes the alignment gn(xn). This happens
often with Viterbi or PMAP-alignments. The existence of an infinite alignment is
trivial if every observation is classified independently. The existence of an infinite
alignment allows to study asymptotic properties of the alignment. Usually it is done
via the corresponding alignment process {Gt}∞t=1 := g(X).

In the following, we consider the existence of infinite Viterbi alignments. Under
rather restrictive assumptions on HMMs the existence of an infinite Viterbi alignment
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was first proven in [3]. In [19], the existence of an infinite Viterbi alignment was
proven under less restrictive assumptions. We now introduce these assumptions and
the corresponding results.

Recall that fs are the densities of Ps := P(X1 ∈ ·|Y1 = s) with respect to some
reference measure µ on (X ,B). For each s ∈ S, let Gs := {x ∈ X : fs(x) > 0}.

We call a subset C ⊂ S a cluster if the following conditions are satisfied:

min
j∈C

Pj(∩s∈CGs) > 0 and max
j 6∈C

Pj(∩s∈CGs) = 0.

Hence, a cluster is a maximal subset of states such thatGC = ∩s∈CGs, the intersection
of the supports of the corresponding emission distributions, is ‘detectable’. Distinct
clusters need not be disjoint and a cluster can consist of a single state. In this latter
case such a state is not hidden, since it is exposed by any observation it emits. If
|S| = 2, then S is the only cluster possible, because otherwise the underlying Markov
chain would cease to be hidden.

Let C be a cluster. The existence of C implies the existence of a set Xo ⊂ ∩s∈CGs
and ε > 0, M <∞ such that µ(Xo) > 0, and ∀x ∈ Xo the following statements hold:
(i) ε < mins∈C fs(x); (ii) maxs∈C fs(x) < M ; (iii) maxs6∈C fs(x) = 0. For proof, see
[19].

In the following, we introduce two assumptions on HMMs that are needed for the
existence of an infinite Viterbi alignment.

A1 (cluster-assumption): There exists a cluster C ⊂ S such that the sub-
stochastic matrix R = (P (i, j))i,j∈C is primitive, i.e. there is a positive integer
r such that the rth power of R is strictly positive.

A2: For each state l ∈ S,

Pl

({
x ∈ X : fl(x)p∗l > max

s,s6=l
fs(x)p∗s

})
> 0, p∗l = max

j
pj,l, ∀l ∈ S. (2.7)

The cluster assumption A1 is often met in practice. It is clearly satisfied if all
elements of the matrix P are positive. Since any irreducible aperiodic matrix is
primitive, the assumption A1 is also satisfied if the densities fs satisfy the following
condition: for every x ∈ X , mins∈S fs(x) > 0, i.e. for all s ∈ S, Gs = X . Thus, A1
is more general than the strong mixing condition (Assumption 4.2.21 in [4]) and also
weaker than Assumption 4.3.29 in [4]. Note that A1 implies the aperiodicity of Y ,
but not vice versa.

The assumption A2 is more technical in nature. In [14] it was shown that for
a two-state HMM, (2.7) always holds for one state, and this is sufficient for the
infinite Viterbi alignment. Hence, for the case |S| = 2, A2 can be relaxed. Another
possibilities for relaxing A2 are discussed in [18, 19]. To summarize: we believe that
the cluster assumption A1 is essential for HMMs, while the assumption A2, although
natural and satisfied for many models, can be relaxed. For more general discussion
about these assumptions, see [18, 19, 16, 14].

8



In the following, let Ṽ n = vn(Xn), where vn is a finite Viterbi alignment. The
results of the present paper are largely based on the following theorem, which has
been proved in [19, 18]. See also Lemma 2.1 in [9].

Theorem 2. Let (X,Y ) = {(Xt, Yt)}∞t=1 be a one-sided ergodic HMM satisfying A1
and A2. Then there exists an infinite Viterbi alignment v : X∞ → S∞. Moreover, the
finite Viterbi alignments vn : Xn → Sn can be chosen so that the following conditions
are satisfied:

R1 the process Z := (X,Y, V ), where V := {Vt}∞t=1 is the alignment process, is a
positively recurrent aperiodic regenerative process with respect to some renewal
process {St}∞t=0;

R2 there exists a nonnegative integer m <∞ such that for every j ≥ 0, Ṽ nt = Vt for
all n ≥ Sj +m and t ≤ Sj .

Proof. The required infinite alignment is constructed piecewisely. The construction
and main proof are given in [19]. The piecewise construction guarantees R2. The
regenerativity and positive recurrence is shown in Section 4 of [18]. The aperiodicity
follows from the aperiodicity of Y that follows from A1.

In what follows, we always assume that the finite Viterbi alignments vn : Xn → Sn

are chosen according to Theorem 2. These choices of alignments are called consistent.
Obviously, the consistent choice becomes an issue only if the finite Viterbi alignment is
not unique. In practice, the consistent choices can be obtained just by predefined tie-
breaking rules. With consistent choices, the process Z̃n := {(Ṽ nt , Xt, Yt)}nt=1 satisfies
by R2 the following property: Z̃nt = Zt for every t = 1, . . . , Sk(n), where k(n) =
max{k ≥ 0 : Sk +m ≤ n}.

Let p ∈ N and gp : Zp → R be measurable. We define for every i = p, . . . , n

Ũni := gp(Z̃
n
i−p+1, . . . , Z̃

n
i ).

If i ≤ Sk(n), then

Ũni = Ui := gp(Zi−p+1, . . . , Zi).

Finally, let
Mk := max

Sk<i≤Sk+1

|Ũ iSk+1 + · · ·+ Ũ ii |.

The random variables Mp,Mp+1, . . . are identically distributed, but for p > 1 not
necessarily independent.

The following theorem generalizes Theorem 3.1 of Chapter VI in [1]. The proof is
based on the same argument. Recall that Z∗ is a stationary version of Z.

Theorem 3. Let gp be such that EMp <∞ and E|gp(Z∗1 , . . . , Z∗p )| <∞. Then

1

n− p+ 1

n∑
i=p

Ũni → EUp = Egp(Z
∗
1 , . . . , Z

∗
p ) a.s. and in L1. (2.8)
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Proof.

1

n− p+ 1

n∑
i=p

Ũni =
1

n− p+ 1

( Sk(n)∑
i=p

Ui +

n∑
i=Sk(n)+1

Ũni

)
.

Since Sk(n) ↗∞ a.s., from (2.3) we know that

1

Sk(n)

Sk(n)∑
i=p

Ui → Egp(Z
∗
1 , . . . , Z

∗
p ) a.s. and in L1. (2.9)

Note that
Sk(n)

n− p+ 1
=
Sk(n)

k(n)

k(n)

n− p+ 1
.

Since ET1 <∞ and n ≥ p, by SLLN and the elementary renewal theorem

Sk(n)

n− p+ 1
→ 1 a.s. and in L1.

Combining this with (2.9) and taking into account that the sequence { Sk(n)

n−p+1} is
bounded, we obtain that

1

n− p+ 1

Sk(n)∑
i=p

Ui → Egp(Z
∗
1 , . . . , Z

∗
p ) a.s. and inL1.

Note that ∣∣∣ 1

n− p+ 1

n∑
i=Sk(n)+1

Ũni

∣∣∣ ≤ Mk(n)

Sk(n) + 1− p
≤

Mk(n)

k(n)− p+ 1
.

The theorem is proven if we can show that, as k →∞,

Mk

k
→ 0 a.s. and in L1.

By the Borel-Cantelli lemma this holds if for every ε > 0,

∞∑
k=p

P
(Mk

k
> ε
)

=

∞∑
k=p

P
(Mp

ε
> k

)
≤ EMp

ε
<∞,

because the random variables Mk, k ≥ p, are indentically distributed. Clearly,
E[Mk

k ]→ 0, so by Scheffe’s theorem Mk

k → 0 in L1 as well.
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2.2.2 Double-sided infinite Viterbi alignment

Definition 2. Let for every z1, z2 ∈ Z, gz2z1 : X [z1,z2] → S[z1,z2] be a classifier. We say
that the set {gz2z1} of classifiers can be extended to infinity, if there exists a function

g : X Z → SZ (2.10)

such that for almost every realization x∞−∞ ∈ X Z the following statement holds: for
every k ∈ N there exists m ≥ k (depending on x∞−∞) such that for every n ≥ m

gn−n(xn−n)i = g(x∞−∞)i, i = −k, . . . , k.

The function g will be referred to as an infinite double-sided alignment.

The piecewise construction of the infinite Viterbi alignment allows the double-
sided extension as well.

Theorem 4. Let (X,Y ) = {(Xt, Yt)}∞t=−∞ be a double-sided ergodic HMM satisfying
A1 and A2. Then there exists an infinite Viterbi alignment v : X Z → SZ. Moreover,
the finite Viterbi alignments vz2z1 can be chosen so that the following conditions are
satisfied:

RD1 the process (X,Y, V ), where V := {Vt}∞t=−∞ is the alignment process, is a
positively recurrent aperiodic regenerative process with respect to some renewal
process {St}∞t=−∞;

RD2 there exists a nonnegative integer m < ∞ such that for every j ≥ 0, Ṽ nt = Vt
for all n ≥ Sj +m and S0 ≤ i ≤ Sj ;

RD3 the mapping v is a stationary coding, i.e. v(θ(X)) = θv(X), where θ is a shift
operator: θ(. . . , x−1, x0, x1, . . .) = (. . . , x0, x1, x2, . . .).

Proof. The proof of RD1 and RD2 is the same as in Theorem 2. Note the difference
between R2 and RD2. The stationarity of v follows from the fact that the barriers
in the construction of the infinite alignment are separated (Lemma 3.2 in [19]).

In the following, the finite Viterbi alignments vz2z1 are chosen to be consistent.
The property RD3 is important. Since X is an ergodic process, from RD3 it fol-
lows that the double-sided alignment process V = {Vt}∞t=−∞ as well as the pro-
cess {(Xt, Yt, Vt)}∞t=−∞ is an ergodic process. Let Z∗ denote the restriction of
{(Xt, Yt, Vt)}∞t=−∞ to the nonnegative integers, i.e. Z∗ = {(Xt, Yt, Vt)}∞t=1. By RD2,

the restriction of Z∗ is a stationary version of Z as in R1. Thus (X0, Y0, V0)
D
=

(X∗1 , Y
∗
1 , V

∗
1 ) = Z∗1 and in the following, we shall often use this. Note that the one-

sided Viterbi process V in R1 is not defined at time zero so that the random variable
V0 always implies the double-sided, hence stationary, case.
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2.3 Smoothing probabilities

Let (X,Y ) = {(Xt, Yt)}∞t=−∞ be a double-sided HMM. From Levy’s martingale con-
vergence theorem it immediately follows that for every state j ∈ S and z, t ∈ Z,
the limits of the smoothing probabilities P(Yt = j|X∞z ) := limn P(Yt = j|Xn

z ) and
P(Yt = j|X∞−∞) := limz→−∞P(Yt = j|X∞z ) exist almost surely. In [16] it is shown
that under A1 these probabilities satisfy the following exponential forgetting inequal-
ities:

‖P(Yt ∈ ·|X∞1 )−P(Yt ∈ ·|X∞−∞)‖ ≤ Cρt a.s. , (2.11)

‖P(Yt ∈ ·|X∞1 )−P(Yt ∈ ·|Xn
1 )‖ ≤ Cρn−t a.s. , (2.12)

where t ≥ 1, C is a finite positive random variable and ρ ∈ (0, 1). Here ‖ · ‖ stands
for the total variation distance.

In what follows, we shall use the notation pt(j|x∞−∞) := P(Yt = j|X∞−∞ = x∞−∞).

3 Convergence of R1-risk

Let the loss function be defined as in (1.4) and let vn be a consistently chosen Viterbi
alignment. If the underlying Markov chain would not be hidden, the empirical risk
of the Viterbi alignment could be directly calculated as follows:

R1(Y n, Xn) =
1

n

n∑
t=1

l(Yt, v
n
t (Xn)) =

1

n

n∑
t=1

l(Yt, Ṽ
n
t ). (3.1)

The conditional expectation of R1(Y n, Xn) given Xn is the random variable
R1(v,Xn) = E[R1(Y n, Ṽ n)|Xn]. Since S is finite and l : S × S → R is bounded,
from Theorem 3 and (2.5) it follows that

R1(Y n, Ṽ n)→ El(Y0, V0) =
1

ET1
E
( S1∑
t=S0+1

l(Yt, Vt)
)

=: R1 a.s. and in L1. (3.2)

We shall call the constant R1 asymptotic Viterbi risk. It depends on the model (Y,X)
and on the loss function l, only. For l(s, s′) = I{s′ 6=s}, the actual risk is the average
number of mistakes made by the Viterbi alignment:

R1(Y n, Ṽ n) =
1

n

n∑
t=1

I{Yt 6=Ṽ nt }
, (3.3)

and the corresponding asymptotic risk is the asymptotic misclassification probability
P(Y0 6= V0).

To show the convergence of R1(v,Xn) we use the following lemma (see Theorem
9.4.8 in [5]). To our knowledge, the idea of considering the R1-type limits for the
Viterbi alignment has been first mentioned in [2], the convergence of the empirical
risk is also stated in [9].
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Lemma 1. Let Xn be bounded random variables such that Xn → 0 a.s. Let {Fn}∞n=1

be a filtration. Then
E[Xn|Fn]→ 0 a.s. (3.4)

The following theorem is the first main result of this paper. A similar result for
the PMAP-alignment, namely the convergence of R1(Xn) to a constant, is proven in
[16].

Theorem 5. Let {(Yt, Xt)}∞t=1 be an ergodic HMM satisfying A1 and A2. Then
there exists a constant R1 ≥ 0 such that the empirical risk and the risk of the Viterbi
alignment both converge to R1 almost surely and in L1:

lim
n
R1(Y n, Xn) = lim

n
R1(v,Xn) = R1 a.s. and in L1. (3.5)

Moreover, the expected risk of Viterbi alignments converges to R1 as well:
ER1(v,Xn)→ R1.

Proof. The convergence of the empirical risk is (3.2). To show that R1(v,Xn)→ R1

a.s., apply Lemma 1 with Xn := R1(Y n, Xn) − R1. Clearly, R1(Y n, Xn) − R1 is
bounded and by (3.2) it goes to 0 a.s. Thus, by (3.4),

|E[R1(Y n, Xn)−R1|Xn]| = |E[R1(Y n, Xn)|Xn]−R1| = |R1(v,Xn)−R1| → 0 a.s.

By Scheffe’s theorem, the convergence in L1 follows by the non-negativity and bound-
edness ofR(Xn). The convergence in L1 implies the convergence of expected risks.

4 Convergence of R̄1-risk

For the convergence of R̄1 we use Theorem 4. Recall that the double-sided infinite
alignment v is a stationary coding. Consider the function f : X Z → SZ, where

f(x∞−∞) := ln p0
(
v(x∞−∞

)
0
|x∞−∞) = ln P(Y0 = V0|X∞−∞ = x∞−∞).

In the following, let vi(x
∞
−∞) := v(x∞−∞)i be the i-th element of the infinite alignment.

Note that for every t = 1, 2, . . .,

f
(
θt(x

∞
−∞)

)
= ln p0

(
v0(θt(x

∞
−∞))

∣∣θt(x∞−∞)
)

= ln pt
(
v0(θt(x

∞
−∞))

∣∣x∞−∞)
= ln pt

(
vt(x

∞
−∞)|x∞−∞

)
= ln P(Yt = Vt|X∞−∞ = x∞−∞).

Thus, by Birkhoff’s ergodic theorem, there exists a constant R̄1 such that

− 1

n

n∑
t=1

ln P(Yt = Vt|X∞−∞)→ −E
(

ln P(Y0 = V0|X∞−∞)
)

=: R̄1 a.s. and in L1,

(4.1)
provided the expectation is finite. Recall the inequalities (2.11) and (2.12). Unfor-
tunately these bounds do not immediately hold for the logarithms. The following
lemma uses the inequality | ln a− ln b| ≤ 1

min{a,b} |a− b|, provided that a, b > 0.
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Lemma 2. Suppose that for an α > 0

E
( 1

P(Y0 = V0|X∞−∞)

)α
<∞ . (4.2)

Then

lim
n→∞

− 1

n

n∑
t=1

ln P(Yt = Vt|Xn)→ R̄1 a.s. (4.3)

Proof. Let ξt := P(Yt = Vt|X∞−∞), ηnt := P(Yt = Vt|Xn
1 ), ηt := P(Yt = Vt|X∞1 ) and

let β = 1
α . Recall that {ξt} is a stationary ergodic process. The assumption (4.2)

ensures that E| ln ξ0| <∞. Hence, by assumption,

∞∑
t=1

P(ξt ≤
1

tβ
) =

∞∑
t=1

P(ξ−αt ≥ t) ≤ E(ξ−αt ) + 1 <∞ .

Thus, the sequence ξt, t = 1, 2, . . ., satisfies P(ξt >
1
tβ

ev) = 1. From (2.11) it follows

that P(ηt >
1

2tβ
ev) = 1. Thus, almost surely | ln ηt − ln ξt| ≤ C2tβρt eventually.

Since − 1
n

∑n
t=1 ln ξt → R̄1 a.s., we now have

− 1

n

n∑
t=1

ln ηt → R̄1 a.s. (4.4)

Let m = bn2 c and note that by (2.12) it holds that |ηnt − ηt| ≤ Cρn−t ≤ Cρm ≤ Cρt

a.s., provided t = 1, . . . ,m. Let (random) T be so big that ηt >
1

2tβ
when t > T .

Let (random) M be so big that Cρm < 1
4mβ

when m > M . Thus, for T < t ≤ m

and m > M it holds that Cρm < 1
4mβ
≤ 1

4tβ
. The inequality (2.12) then implies that

min{ηt, ηnt } ≥ 1
4tβ

and | ln ηnt − ln ηt| ≤ (4tβC)ρm. Hence, as m goes to infinity,∣∣∣∣∣ 1

m

m∑
t=1

ln ηnt −
1

m

m∑
t=1

ln ηt

∣∣∣∣∣ ≤ 1

m

T∑
t=1

| ln ηnt − ln ηt|+
1

m

m∑
t=T+1

| ln ηnt − ln ηt|

≤ 1

m

T∑
t=1

| ln ηnt − ln ηt|+
1

m

m∑
t=T+1

(4tβC)ρm → 0 .

From (4.4) it now follows that − 1
m

∑m
t=1 ln ηnt → R̄1 a.s. In other words, we have

proven that

− 2

n

bn2 c∑
t=1

ln P(Vt = Yt|Xn)→ R̄1 a.s.

By RD3, the process (X,Y, V ) is stationary. Hence, for every n,

− 2

n

n∑
t=bn2 c+1

ln P(Vt = Yt|Xn)
D
= − 2

n

bn2 c∑
t=1

ln P(Vt = Yt|Xn). (4.5)
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Thus the left hand side of (4.5) tends to R̄1 a.s. as well, so that

lim
n→∞

− 1

n

n∑
t=1

ln P(Vt = Yt|Xn)→ R̄1 a.s. (4.6)

Let C be the cluster that satisfies the assumptions of A1 and let Xo be the
corresponding set. The following proposition is proven in Appendix.

Proposition 1. Let x∞−∞ ∈ X Z be such that for some u, v ∈ N, x−u+r−u ∈ X r+1
o ,

xvv−r ∈ X r+1
o and for every s ∈ S, limn p0(s|xn−n) = p0(s|x∞−∞). Let v0 = v0(x∞−∞).

Then there exist constants c > 0 and 0 < B <∞ such that

p0
(
v0|x∞−∞

)
≥ c exp[−B(u+ v)]. (4.7)

Lemma 3. There exists α > 0 such that for every t ∈ Z,

E
( 1

P(Yt = Vt|X∞−∞)

)α
<∞ . (4.8)

Proof. Let U and V be the following stopping times:

U = min{t ≥ r + 1 : X−t+r−t ∈ X r+1
o }, V = min{t ≥ r + 1 : Xt

t−r ∈ X r+1
o }. (4.9)

Since X is stationary, the stopping times U and V are identically distributed. Because
for every s ∈ S, limn P(Y0 = s|Xn

−n) = P(Y0 = s|X∞−∞) a.s., from the inequality (4.7)
it follows that

P(Y0 = V0|X∞−∞) ≥ c exp[−B(U + V )] a.s. (4.10)

It is not hard to see that for some positive constants a and b and for every k = 1, 2, . . .,

P(U > k) ≤ a exp(−bk),

see, e.g. [9]. This inequality implies that for α > 0 small enough, E(eαU ) < ∞. By
the Cauchy-Schwartz inequality, for sufficiently small α,

E
(
eα(U+V )

)
= E

(
eαUeαV

)
≤
(
E
(
e2αU

)
E
(
e2αV

)) 1
2

<∞. (4.11)

The inequalities (4.10) and (4.11) imply (4.8) for t = 0. By the stationarity of (X,Y ),
(4.8) holds for arbitrary t.

The proof of Proposition 1 reveals that it holds also for a finite sequence of obser-
vations xn. Moreover, the following corollary holds.

Corollary 2. Let xn ∈ Xn be such that for some w < n − r, xw+r
w ∈ X r+1

o . Let
ṽt = vt(x

n). Then there exist c > 0 and 0 < D <∞ such that for every t, w < t ≤ n,

pt(ṽt|xn) ≥ c exp[−D(n− w)]. (4.12)
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The proof of Corollary 2 follows the one of Proposition 1 and is sketched in Ap-
pendix.

Theorem 6. Let {(Yt, Xt)}∞t=1 be an ergodic HMM satisfying A1 and A2. Then
there exists a constant R̄1 such that

lim
n→∞

R̄1(v,Xn) = lim
n→∞

− 1

n

n∑
t=1

ln P(Yt = Ṽ nt |Xn)→ R̄1 a.s. and in L1. (4.13)

Proof. Without loss of generality, we can consider a double-sided HMM
{(Yt, Xt)}∞t=−∞ By RD2, Ṽ nt = Vt for every S0 ≤ t ≤ Sk(n), where k(n) = max{k ≥
0 : Sk +m ≤ n} and {St}t≥0 is the renewal process as in Theorem 4. Thus,

n∑
t=1

ln P(Yt = Ṽ nt |Xn) =

S0−1∑
t=1

ln P(Yt = Ṽ nt |Xn) +

Sk(n)∑
t=S0

ln P(Yt = Vt|Xn) +

n∑
t=Sk(n)+1

ln P(Yt = Ṽ nt |Xn).

By (4.3), it suffices to prove that

1

n

n∑
t=Sk(n)+1

ln P(Yt = Ṽ nt |Xn)→ 0 a.s. (4.14)

For every k ≥ 0, let

Mk = max
Sk<i≤Sk+1

| ln P(YSk+1 = Ṽ iSk+1|Xn) + · · ·+ ln P(Yi = Ṽ ii |Xn)|.

The random variables Mk are iid. As in the proof of Theorem 3, for (4.14) it now
suffices to show that EMk <∞ for every k ≥ 0.

We shall consider S1. The construction of Sk implies that there exists an integer
m such that m > r+1 and for every k, the observations XSk−m, . . . , XSk−m+r belong
to Xo (see [19]). Recall that we are considering the case n ≤ S2. Hence, for every t
such that S1 < t ≤ n, by (4.12),

| ln P(Yt = Ṽ nt |Xn)| ≤ D(n− S1 +m) ≤ D(S2 − S1 +m),

implying that
|M1| ≤ D(S2 − S1 +m)2. (4.15)

The renewal times S2 − S1 have all moments (see [9, 18]), hence EM1 <∞.

Remark. Note that the approach of the present section can be easily applied to
prove the convergence of the R1-risk: R1(v,Xn) → R1 a.s. Indeed, the counterpart
of (4.1) is

1

n

n∑
t=1

P(Yt = Vt|X∞−∞)→ E
(
P(Y0 = V0|X∞−∞)

)
=: 1−R1 a.s.and in L1. (4.16)
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The inequalities (2.11) and (2.12) immediately imply

lim
n→∞

1

n

n∑
t=1

P(Yt = Vt|Xn)→ 1−R1 a.s.,

and since the probabilities are bounded, the convergence

R1(v,Xn) = 1− 1

n

n∑
t=1

P(Yt = Ṽ nt |Xn)→ R1 a.s.

now easily follows.
From the remark above it is clear that the difficulties with the R̄1-risk are due

to unboundedness of ln P(Yt = Ṽ nt |Xn), since, in principle, P(Yt = Ṽ nt |Xn) can be
arbitrarily small. However, the latter is not so when instead of the Viterbi alignment
the PMAP-alignment is used. Then maxs P(Yt = s|Xn) ≥ |S|−1. By Birkhoff’s
theorem,

− 1

n

n∑
t=1

max
s∈S

ln P(Yt = s|X∞−∞)→ R̄∗1 a.s. and in L1 , (4.17)

where R̄∗1 is a constant. The inequalities (2.11) and (2.12) imply that

|max
s

ln P(Yt = s|Xn)−max
s

ln P(Yt = s|X∞−∞)| ≤ C|S|(ρn + ρn−t) a.s.

Thus, the convergence (4.17) implies the convergence

R̄1(Xn) = − 1

n

n∑
t=1

max
s∈S

ln P(Yt = s|Xn)→ R̄∗1 a.s. and in L1. (4.18)

Hence, the following corollary holds.

Corollary 3. There exists a constant R̄∗1 such that (4.18) holds.

5 Convergence of log-likelihood

Let Qs be the conditional measure P(X0 ∈ ·|V0 = s), s ∈ S. As it follows from Theo-
rem 3, the measure Qs is the almost sure limit of the empirical measure corresponding
to the Viterbi alignment state s, i.e. for every Borel set A,∑n

t=1 IA×s(Xt, Ṽ
n
t )∑n

t=1 Is(Ṽ
n
t )

→ Qs(A) a.s. (5.1)

This convergence is the basis of the adjusted Viterbi training introduced in [17, 18].
For every Qs-integrable g,

E
(
g(X0)Is(V0)

)
= E

(
g(X0)|V0 = s

)
P(V0 = s) = ms

∫
g(x)Qs(dx), (5.2)
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where ms := P(V0 = s).
Suppose now that the logarithms of the conditional densities fs are Qs-integrable

for every s. As shown in [12], this holds if ln fs is Ps-integrable. Then, by Theorem
3 and (5.2), for every state s ∈ S

1

n

n∑
t=1

ln fs(Xt)Is(Ṽ
n
t ) → E

(
ln fs(X0)Is(V0)

)
= ms

∫
ln fs(x)Qs(dx) a.s. and in L1. (5.3)

Let p(xn|sn) be the conditional likelihood of observing xn given that {Y n = sn}.
Thus,

ln p(xn|sn) =

n∑
t=1

ln fst(xt) =

n∑
t=1

ln f1(xt)I1(st) + · · ·+
n∑
t=1

ln f|S|(xt)I|S|(st). (5.4)

Applying (5.4) to the Viterbi alignment, from the convergence (5.3) follows that under
the assumption that ln fs is Qs-integrable,

1

n
ln p(Xn|Y n = v(Xn))→

∑
s∈S

ms

∫
ln fs(x)Qs(dx) a.s. and in L1. (5.5)

Recall that R̄∞(Xn) = − 1
n ln P(Y n = Ṽ n|Xn).

Theorem 7. Let for every s ∈ S the function ln fs be Ps-integrable. Then

− R̄∞(Xn)→
∑
s∈S

ms

∫
ln fs(x)Qs(dx) +E[ln pV ∗1 V ∗2 ] +HX =: −R̄∞ a.s and in L1,

(5.6)
where HX is the entropy rate of X and pij = P(Y2 = j|Y1 = i).

Proof. Let p(xn) be the likelihood of xn. Then

P(Y n = Ṽ n|Xn) =
p(Xn|Ṽ n)P(Y n = Ṽ n)

p(Xn)
.

Thus,

R̄∞(Xn) = − 1

n

(
ln p(Xn|Ṽ n) + ln P(Y n = Ṽ n)− ln p(Xn)

)
.

The first term of the RHS converges by (5.5). For the second term use the Markov
property

ln P(Y n = Ṽ n) = lnπṼ n1
+ ln pṼ n1 Ṽ n2

+ · · ·+ ln pṼ nn−1Ṽ
n
n
,
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where πs = P(Y1 = s). Since Ṽ n is a path with positive likelihood, pṼ nt ,Ṽ nt+1
> 0

a.s. for every t. Because the number of states is finite, there exists a constant M > 0
such that for every i,

− ln pṼ ni Ṽ ni+1
< M a.s.

Hence, the assumptions of Theorem 3 hold and, with pṼ n0 Ṽ n1
= πṼ n1

, we get

1

n
ln P(Y n = Ṽ n) =

1

n

n−1∑
t=0

ln pṼ nt Ṽ nt+1
→ E[ln pV ∗1 V ∗2 ] a.s and in L1.

Finally, by the Shannon-McMillan-Breiman theorem,

1

n
ln p(Xn)→ −HX a.s. and in L1.

Remark. Note that −E[ln pY1Y2 ] is the entropy rate of Y . By the same argument,

1

n
ln P(Y n|Xn)→

∑
s∈S

πs

∫
ln fs(x)Ps(dx)−HY +HX =: −R̄Y∞ a.s. and in L1,

(5.7)
where HY is the entropy rate of Y . The convergence in L1 implies

− 1

n
E[ln P(Y n|Xn)]→ R̄Y∞,

where the expectation is taken over Xn and Y n. Since E[ln P(Y n|Xn)] = H(Y n|Xn)
(the conditional entropy of Y n given Xn), the limit R̄Y∞ could be interpreted as the
conditional entropy rate of Y given X, it is not the entropy rate of Y . Clearly,

R̄∞ ≤ R̄Y∞, (5.8)

and the difference of those two numbers shows how much the Viterbi alignment ”over-
estimates” the likelihood.
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A Appendix

A.1 Preliminaries

Let us start with some notation. For every sequence of observations xlk =
(xk, . . . , xl) ∈ X l−k+1, for every sequence of states ylk = (yk, . . . , yl) ∈ Sl−k+1 and
states i, j ∈ S, we denote by p(xlk, y

l
k, j|i) the following conditional likelihood:

p(xlk, y
l
k, j|i) := P (i, yk)

l−1∏
u=k

P (yu, yu+1)P (yl, j)

l∏
u=k

fyu(xu).

Similarly,

p(xlk, y
l
k|i) :=

∑
j

p(xlk, y
l
k, j|i), p(xlk, y

l
k) :=

∑
i

p(xlk, y
l
k, j|i)π(i).

We also define

α(xlk, s) :=
∑

ylk∈Sk−l+1:yl=s

p(xlk, y
l
k), β(xlk|i) =

∑
ylk∈Sk−l+1

p(xlk, y
l
k|i).

The last two notations are standard in the HMM literature, see e.g. [8, 4]. Let

β(xlk, s|i) =
∑

ylk:yl=s

p(xlk, y
l
k|i), α(s, xlk) :=

∑
ylk∈Sk−l+1:yk=s

p(xlk, y
l
k).

Finally, let

σ(xlk, j|i) := max
ylk

p(xlk, y
l
k, j|i), σ(xlk|i) := max

ylk

p(xlk, y
l
k|i).

Let C be the cluster as in A1. Thus, there is an r ≥ 1 such that the matrix Rr

has positive entries. Let Xo be the corresponding set. Suppose zr ∈ X ro and yr ∈ Cr.
By the definition of Xo, it holds that

εr ≤
( r∏
u=1

fyu(zu)
)
≤Mr.

By the cluster assumption, 0 < mini,j∈C R
r(i, j) ≤(

P (i, y1)P (y1, y2) . . . P (yr−1, yr)
)
≤ 1, provided i, j ∈ C. Hence there exist

constants 0 < a < A <∞, not depending on the observations, such that

a < p(xr, yr|i) < A and a < p(xr−1, yr−1, j|i) < A, j ∈ C. (A.1)

Suppose now xm, m > r, is a sequence of observations such that the first r elements
belong to the set Xo, i.e. xr ∈ X ro . Then for every i, p(xm, ym|i) > 0 only if yr ∈ Cr,
implying that

σ(xm, j|i) = max
s∈C

max
yr∈Cr:yr=s

p(xr, yr|i)σ(xmr+1, j|s).
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Let now i1, i2 ∈ C. Then for some states s1, s2 ∈ C,

σ(xm, j|i1) = max
yr∈Cr:yr=s1

p(xr, yr|i1)σ(xmr+1, j|s1),

σ(xm, j|i2) = max
yr∈Cr:yr=s2

p(xr, yr|i2)σ(xmr+1, j|s2)

≥ max
yr∈Cr:yr=s1

p(xr, yr|i2)σ(xmr+1, j|s1).

Hence, the inequalities (A.1) imply that for every state j

σ(xm, j|i1)

σ(xm, j|i2)
≤ maxyr∈Cr:yr=s1 p(x

r, yr|i1)

maxyr∈Cr:yr=s1 p(x
r, yr|i2)

≤ A

a
. (A.2)

Similarly, if xm is such that the last r elements belong to Xo, i.e. xmm−r+1 ∈ X r, then
for arbitrary states j1, j2 ∈ C there exist s1, s2 ∈ C such that

σ(xm, j1|i) = max
ym−r+1:ym−r+1=s1

p(xm−r+1, ym−r+1|i)σ(xmm−r+2, j1|s1),

σ(xm, j2|i) = max
ym−r+1:ym−r+1=s2

p(xm−r+1, ym−r+1|i)σ(xmm−r+2, j2|s2)

≥ max
ym−r+1:ym−r+1=s1

p(xm−r+1, ym−r+1|i)σ(xmm−r+2, j2|s1).

So from (A.1) it follows that

σ(xm, j1|i)
σ(xm, j2|i)

≤
σ(xmm−r+2, j1|s1)

σ(xmm−r+2, j2|s1)
≤ A

a
. (A.3)

A.2 Proof of Proposition 1

Proof. Let x∞−∞ be a sequence of observations and let xn−n be its subword. For every
state i ∈ S, we are interested in probability p0(i|xn−n) := P(Y0 = i|Xn

−n = xn−n). Note
that

p0(i|xn−n)p(xn−n) =
∑

yn−n:y0=i

p(xn−n, y
n
−n) =: γ0(xn−n, i).

Observe that for every u, v ∈ {1, . . . , n− 1} and for an arbitrary state, let it be 1,

γ0(xn−n, i) =
∑

s1,s2,s3,s4∈S
α(x−u−n, s1)β(x−1−u+1, s2|s1)×

× P (s2, 1)f1(x0)β(xv−11 , s3|1)P (s3, s4)α(s4, x
n
v )

≥
∑

s1,s4∈S
α(x−u−n, s1)σ(x−1−u+1, 1|s1)f1(x0)σ(xv−11 , s4|1)α(s4, x

n
v )

≥ p(x−u−n)
(

min
s
σ(x−1−u+1, 1|s)

)
f1(x0)

(
min
s
σ(xv−11 , s|1)

)
p(xnv ).

Without loss of generality assume v0(x∞−∞) = 1. Let v−u(x∞−∞) = a and vv(x
∞
−∞) = b.

By Bellman’s optimality principle, for every io ∈ S

σ(x−1−u+1, 1|a)f1(x0)σ(xv−11 , b|1) ≥ σ(x−1−u+1, io|a)fio(x0)σ(xv−11 , b|io),
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implying that for every state io,

f1(x0) ≥
σ(x−1−u+1, io|a)

σ(x−1−u+1, 1|a)
fio(x0)

σ(xv−11 , b|io)
σ(xv−11 , b|1)

.

Thus,

γ0(xn−n, 1) ≥ p(x−u−n)

(
mins σ(x−1−u+1, 1|s)

)
σ(x−1−u+1, 1|a)

σ(x−1−u+1, io|a)fio(x0)×

× σ(xv−11 , b|io)
(

mins σ(xv−11 , s|1)
)

σ(xv−11 , b|1)
p(xnv ). (A.4)

Note that for every xmk ,∑
s

β(xmk , s|i)P (s, j) =
∑
ymk

p(xmk , y
m
k , j|i) ≤ |S|m−k+1σ(xmk , j|i).

Therefore, for every io ∈ S

γ0(xn−n, io) =
∑

s1,s2,s3,s4∈S
α(x−u−n, s1)β(x−1−u+1, s2|s1)×

× P (s2, io)fio(x0)β(xv−11 , s3|io)P (s3, s4)α(s4, x
n
v )

≤
∑

s1,s4∈S
α(x−u−n, s1)|S|u−1σ(x−1−u+1, io|s1)fio(x0)|S|v−1σ(xv−11 , s4|io)α(s4, x

n
v )

≤ p(x−u−n)|S|u−1
(

max
s∈S

σ(x−1−u+1, io|s)
)
fio(x0)|S|v−1

(
max
s∈S

σ(xv−11 , s|io)
)
p(xnv ).

Let xn−n be such that x−u+r−u ∈ X r+1
o and xvv−r ∈ X r+1

o . Then α(x−u−n, s1) = 0 if
s1 6∈ C, since x−u ∈ Xo. Analogously, α(s4, x

n
v ) = 0 if s4 6∈ C. Thus, in this case, the

inequality above becomes

γ0(xn−n, io) ≤ p(x−un )|S|u−1
(

max
s∈C

σ(x−1−u+1, io|s)
)
×

×fio(x0)|S|v−1
(

max
s∈C

σ(xv−11 , s|io)
)
p(xnv ). (A.5)

The same holds for (A.4), implying that

γ0(xn−n, 1)

γ0(xn−n, io)
≥

mins∈C σ(x−1−u+1, 1|s)
σ(x−1−u+1, 1|a)

σ(x−1−u+1, io|a)

maxs∈C σ(x−1−u+1, io|s)
×

× σ(xv−11 , b|i0)

maxs∈C σ(xv−11 , s|io)
mins∈C σ(xv−11 , s|1)

σ(xv−11 , b|1)
|S|2−(u+v).

The inequalities (A.2) and (A.3) imply that the ratios above are bounded below by
a
A that does not depend on the observations. Thus, there exist constants c1 :=

(
a
A

)4
and 0 < B <∞ (not depending on the data) such that for every state io,

p0(1|xn−n)

p0(io|xn−n)
=

γ0(xn−n, 1)

γ0(xn−n, io)
≥ c1 exp[−B(u+ v)]. (A.6)

24



Since
∑
i∈S p0(i|xn−n) = 1, there exists io such that p0(io|xn−n) ≥ |S|−1. Thus, by

(A.6),

p0(1|xn−n) ≥ c1
|S|

exp[−B(u+ v)].

Because p0(1|xn−n)→ p0(1|x∞−∞), the inequality (4.7) follows by taking c = c1
|S| .

A.3 Proof of Corollary 2

Proof. The proof is analogous to the proof of Proposition 1. Using the same notations
we obtain that for every t, w < t < n,

γt(x
n, ṽt) ≥ p(xw)

(
min
s∈C

σ(xt−1w+1, ṽt|s)
)
fṽt(xt)σ(xnt+1|ṽt).

For every io ∈ S,

γt(x
n, io) ≤ p(xw)

(
max
s∈C

σ(xt−1w+1, io|s)
)
fio(xt)σ(xnt+1|io)|S|n−w−1.

Let vw(xn) = b. By Bellman’s optimality principle,

fṽt(xt) ≥
σ(xt−1w+1, io|b)
σ(xt−1w+1, ṽt|b)

fio(xt)
σ(xnt+1|io)
σ(xnt+1|ṽt)

.

Thus,

pt(ṽt|xn)

pt(io|xn)
=
γt(x

n, ṽt)

γt(xn, io)
≥

mins∈C σ(xt−1w+1, ṽt|s)
σ(xt−1w+1, ṽt|b)

σ(xt−1w+1, io|b)
maxs∈C σ(xt−1w+1, io|s)

|S|−(n−w−1).

Because the ratios above are bounded below by a
A and pt(io|xn) ≥ |S|−1 for some

io ∈ S, the statement of the corollary follows with D = ln |S|.
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