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Abstract

The spatial covariance between prey and predator densities is closely re-
lated to the rate of encounters, and thus to predation rates. To include
the effect of covariance in dynamic predator—prey models it is useful to
express the spatial covariance as a function of predator and prey densi-
ties. Here we derive mean—covariance relationships for a scenario where
predators show an aggregative response, i.e., they respond behaviorally
by aggregating in patches with high prey densities. Prey, on the other
hand, do not respond to predator densities. Some explicit expressions
are obtained when the prey distribution is clumped or random. It is
shown that the prey-predator covariance can be expressed only through
the distributional information of prey. In particular when the prey dis-
tribution is clumped or random, this covariance depends only on the
mean prey density.

Keywords: Predator-prey interaction, covariance, aggregative response, neg-
ative binomial distribution, Poisson distribution.
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1 Introduction

Models describing the consumptive interactions between predators and prey
typically assume that systems are well mixed, and thus that the rate of en-
counters between predators and prey are proportional to mean densities of
predators and prey. Most natural systems are not well mixed; predators and
prey typically have clumped and correlated spatial distributions. The effect
of the correlation between the two distributions on predation rates can be de-
scribed using the spatial covariance between predator and prey densities. For
example, it can be shown for a linear functional response that the numbers
consumed by predators (E) per unit area is given by £ = aNP + aonp ,
where a is the search efficiency in a well mixed system, N and P are mean
prey and predator densities, and o p is the covariance between predator and
prey densities (Bergstrom et al. 2006).

The functional response equation is a fundamental part of dynamic models
of predator-prey interactions. Such models typically use coupled differential
equations to describe the change in predator and prey densities as functions
of mean densities. To include the effects of the covariance in such models it
is therefore useful to express the covariance as a function of average densities.
Thus it is motivated to investigate if the covariance can be described as a
function of average predator and prey densities. Here we investigate a scenario
where predators show an aggregative response, i.e., they respond behaviorally
by aggregating in patches with high prey densities. Prey, on the other hand,
do not respond to predator densities. This corresponds to a situation where
predators are much more mobile than their prey, e.g., herbivores feeding on
plants or parasitoids attacking eggs.

In next section the prey-predator covariance structure is established for
a situation when predators have an aggregative response to prey densities.
Some explicit expressions are obtained when the prey distribution is clumped
or random. Conclusions and discussions can be found in Section 3. All the
proofs are left in the Appendix.

2 Models and results

In this section we consider the relationship between the local density of
prey and predators when predators show an aggregative response, i.e., they
aggregate in high patches with high prey densities. More specifically, the
covariance structure given different types of aggregative responses will be
investigated.



Let X and Y be the number (density) of prey and predators in a patch at
a given point in time. Some notations need to be introduced:

p(z) = P[X = z|: the probability that a patch is inhabited by exactly z prey,
z=0,1,...

p(ylx) = P[Y = y|X = z]: the conditional probability that patches with x
prey are occupied by y predators, y =0, 1, ...

wx = E[X]: the expectation of X,

uy = E[Y]: the expectation of YV,

py|x = E[Y|X]: the conditional expectation of Y given X,

0% =E[X — E[X]]*: the variance of X,

o2 =E[Y —E[Y]]?%: the variance of Y.

By using the conditional expectation py|x, we can get the following ex-
pression of the covariance between prey and predator:

Cov(X,Y)

E[XY] - E[X] - E[Y]
E[X -E[Y|X]] - E[X] - E[E[Y]X]]
E[X py|x] — px - Elpyx]- (2.1)

1>l

It can be seen from (2.1) that the covariance is only depending on the in-
formation about predator number through the conditional expectation py|x,
besides the distributional information of prey, which implies that calculation
of the prey-predator covariance does not require the entire distributional in-
formation for the predators. This property motivates us to investigate the
prey-predator covariance by utilizing the aggregative response model, because
the latter describes precisely how the conditional expectation varies with the
prey density.

As a general model of aggregative responses Nachman (2006) proposed
that the expected number of predators inhabiting a patch with x prey is given
by:

dﬂg;(:z — Cl,me)\:v’
where m, c and A\ are species specific parameters describing the shape of the
aggregative response. m is either 0 or 1, ¢ is either 0 (i.e. no aggregative
response) or positive (i.e. the number of predators is positively associated with
the number of prey per patch). The higher the value of ¢, the more will the
predators tend to aggregate in patches with abundant prey, whereas iy x—;
will decrease in patches with few prey. These parameters can be estimated by

(2.2)



simultaneously fitting the response model to the associated values of X and
Y using the maximum likelihood method.

There are five main types of aggregative response (Van der Meer and Ens,
1997) that can be derived from model (2.2):

(i) ¢ = 0: the predators do not show any aggregative response;
(ii) ¢ > 0,m = 0,A = 0: the aggregative response increases linearly with
prey density;
(iii) ¢ > 0,m = 1, A\ = 0: the response accelerates with prey density;
(iv) ¢ > 0,m = 0, A < 0: the response increase with decelerating slope and

approaches an upper asymptote;
(v) ¢>0,m =1,\ <0: the response is sigmoid.

Type (ii), (iv) and (v) correspond to what Gascoigne and Lipcius (2004) clas-
sified as type I, IT and III aggregative response, respectively. General solutions
for py|x—, can be found in Nachman (2006, Appendix 1).

From the general expression of prey-predator covariance (2.1) we derive
specific expressions corresponding to each of the five aggregative response
models.

Proposition 1. The covariance between prey and predators can be expressed
in accordance to the types of aggregative response as follows:

(i) Cov(X,Y) = 0;

(ii) Cov(X,Y) = cok;

(iii) Cov(X,Y) = g E[X? - puxX?;
(iv) Coo(X,¥) = § B [(X — )]

(v) Cou(X,Y) = § E [(X2 — (ux + %)X + “AX)&X] .

Remark 1: This proposition tells us that the prey-predator covariance does
not depend on the expectation of the predator density, no matter which
aggregative response model we choose. Actually no distributional information
of the predator density is needed.

Remark 2: If the expected predator density (given a prey density) is a linear
increasing function of prey density as in model (ii), the prey-predator covari-
ance is proportional to the prey variance, irrespective of the shape of the prey



and predator distributions. Therefore, it is always positive. It is also interest-
ing to observe that the prey-predator correlation in this case is proportional
to the ratio of standard deviations between prey and predator, that is,

o

Corr(X,Y) = c —.

oy
Remark 3: For the model of accelerating aggregative responses (iii), the co-
variance is a function of the first three moments of prey density. Specifically,

C
Cov(X,Y) = JoXx + cuxo,

where vx denotes the skewness of prey density.

Remark 4: For convex and sigmoid aggregative responses (models (iv) and
(v)), the covariance can be described by means of the moment generating
function (m.g.f.) of prey density and its derivatives. In fact, denoting by
Mx (M) the m.g.f. for prey density X, we have

§ (M5 (X) — pxMx(N)] for convex;
Cov(X,)Y)=1¢ ¢ " 1., X Lo
X M5%(\) — (ux + X)MXO\) + TMX(/\) , for sigmoid.

Note that Mx(\) exists for A < 0 since X is a nonnegative integer-valued
random variable.

The prey-predator covariance becomes more explicit if the prey distribution
is specified. Here we consider the two different types of prey distribution as in
Nachman (2006): clumped and random. Note that the case of no aggregative
response, i.e. model (i), is omitted.

2.1 Clumped prey distribution

When the prey distribution is clumped, that is, X is negativ binomial dis-
tributed (NBD), its probability function is known as

F@+r) ,,

p(iﬂ):P[X:w]:qu,

(2.3)
where p=1—g¢g=r/(ux +r). px = rq/p is the mean number of individuals
per unit and r is a parameter expressing the degree of clumping. The variance
of the NBD is given as 0%( = ux+ ,ug( /7, which is always larger than the mean
px, corresponding to the over-dispersed Poisson distribution. The advantage



of using the NBD is that it allows for any degree of aggregation ranging from
a random (Poisson) distribution (when r — o0) to an extremely clumped
distribution (when r — 0).

From Proposition 1 we obtain the covariance expression for the clumped
prey distribution.

Proposition 2 (Clumped). Suppose that the prey density obeys NBD with
parameter r. Then the prey-predator covariance can be expressed in accordance
to the types of aggregative response as follows:

(ii) Cov(X,Y) = e pux |1+ X,

L T J

- 1M1
(iii) Cov(X,Y) = c px 1+MTX [Q—i-ux%-uf] ;

- 1(e* =1 —(r41)
(iv) Cou(X,Y) = ¢ px 1+“7X (GA) [1+“7X(1—ek)} :

(v) Cov(X,Y) = 052)( [1 + NTX} [(1 —px (A + %)6)\ + ,u;() (1—eM)+ )\eA]

X [1+“—X(1—6A)
T

} —(r+2)

Remark 5: Proposition 2 shows that the prey-predator covariance, when
prey distribution is clumped, is simplified to a function of the mean prey
density and the clumping parameter, besides the shape parameter A\ in the
aggregative response model. Furthermore, the covariance is positive, except
for the sigmoid response model. The more prey is clumped, the larger the
covariance is. In another words, the prey-predator covariance decreases as
the prey density is distributed more randomly.

Remark 6: It is obvious that the prey-predator covariance is a polynomial
function of the mean prey density py for model (ii) and (iii). This is also
true for the convex and sigmoid aggregative response models when the ex-
pected value of prey density is high. In fact, the covariance is approximately
proportional to uﬁ{’", if pux is large.

2.2 Random prey distribution

As the extreme case, when the clumping parameter goes to infinite, we get the
covariance structure for the random prey distribution.



When r — oo, it follows from (2.3) that

F(IE + T) rox :Ufg( F(T + :C) ux .\ — :Ufg( —
= — e e —————— 1 —_ r —_— — 'LLX,
p(x) z!(r) P x! F(r)(r—}—ux)f( + r ) 2

The parameter r controls the deviation from Poisson. This makes the NBD
suitable as a robust alternative to the Poisson, which approaches the Poisson
for large r, but which has larger variance than the Poisson for small r.

From Proposition 2 we have the following expression of the prey-predator
covariance.

Proposition 3 (Random). Suppose that the prey density obeys Poisson dis-
tribution. Then the prey-predator covariance can be expressed in accordance
to the types of aggregative response as follows:

(ii)) Cov(X,Y) = ¢ px;

(iti) Cov(X,Y) =3 [ux + 2% ];

(iv) Cov(X,Y) = WTX(eA _1)ebx (e,

(v) Coo(X,¥) = B [(1 = puxAe)(1 = ) 4+ At emx1=e),

Remark 7: Tt can be seen that the prey-predator covariances is always positive
when the prey density is randomly distributed.

3 Conclusion and discussion

The prey-predator covariance is important for characterizing the dynamics of
predator-prey systems that are spatially heterogeneous. For example, a posi-
tive covariance between hosts and parasitoids can stabilize otherwise unstable
dynamics (see Murdoch et al. 2005). In other systems, such as the benthic
predator-prey system described by Bergstrom et al. (2006), it was found that
the covariance instead destabilized the dynamics. It should be noted though,
that the covariance can only be viewed as a variable that controls popula-
tion dynamics if it is generated by processes that are not dynamically coupled
to birth and mortality, i.e., the processes that drives population dynamics.
Examples of such situations are when the covariance is generated by spatial
variation in habitat quality, or when there is a clear separation of time scales
between movement responses and those of birth and mortality. In contrast, in



systems with unstable mean dynamics, it is the rule that also the covariance
and other higher order moments exhibit oscillating dynamics. In this situation
the covariance should be viewed not as driver, but as one of many descriptors,
along with mean, variance etc., of the spatial dynamics of the system.

The results generated here apply to situations when predators aggregate
in response to high prey densities. The response should be driven by predator
movements and be expressed on a time scale that is fast compared to the rate
of birth and mortality. For this situation we have derived relatively simple
mean-covariance relationships that can be incorporated in spatial predator-
prey models. In particular we note that for linear aggregative responses the
covariance is expected to be proportional to the spatial variance of prey den-
sity. It is a well supported empirical generalization in population ecology that
variances can be described by a power function of mean densities, suggesting
that empirical covariances often can be approximated by a power function of
mean prey density as long as the aggregative response is approximately linear.

In general, for different types of predator aggregative responses (includ-
ing linearly increasing, accelerating, increasing with decelerating slope and
approaching an upper asymptote, and sigmoid), the preypredator covariance
can be expressed using only information about the prey density distribution.
In particular, when prey distribution is clumped, the covariance is a poly-
nomial function of the mean prey density when the aggregative response is
linear or accelerating. This is also true for the convex and sigmoid aggregative
response models when the expected value of prey density is high.

An analogous scenario is expected in situations when prey avoid areas with
high predator densities which, if prey are more mobile than predators, should
generate a negative relationship between predator and prey densities. This
situation will be analyzed in a forthcoming report.
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A Proof of Proposition 1

Proof. We derive the prey-predator covariance structure for each aggregative
response model.

Model (i) This simplest case implies that py|x—, = py and no response
from the predators. Thus Cov(X,Y) = 0.
Model (ii) In this case, the aggregative response model simply leads to
Ky
By |X=z = By +c(x —px); < —.
nx
Plugging it into (2.1) results to

Cov(X,Y) = E[Xpyx|—ux - Elpyx]
= px - py + E[X? = c(ux)? — px - py
= co%. (A.1)

Model (iii) The general solution to this model is

_ C/ 2 21\ . 2y
MY\X::E—MY+§($ - E[X7]); CSE[XQ]-

From (2.1) it follows that
Cov(X,Y) = E[X,uy\x] —px - E[MY\X]
= E[X(uy +5(X* —E[X%)| - uxE [py + 5 (X? — E[x7)]

- % E[X? - pxX?]. (A.2)
Model (iv) The general solution of the aggregative response model here is

€ ( AXTY . Apy
MY\X:x:MY‘Fx(e —Ele Da Cﬁm-

Plugging it into (2.1) results to
Cov(X,Y) = E[Xpy|x] — px - Elpyx]

= E[X - (uy + (¥ —E[))] = puxE [y + (M —E[])]
E[XeM] — uxE[e™])

E [(X - MX)eAX} . (A.3)



Model (v) The general solution to the last type of aggregative response

model is
c 1
Py |x=e = By + (966’\1 —E[XeM] - )\(em - E[GAX])> ;
A2y S
where ¢ < T Plugging it into (2.1) results to

AE[Xer| — ElerX] +
Cov(X,Y) = E[Xpy x| — px - Eluyx]
= E [X : (W + ; <xem —E[XeM] - %(em - E[Wﬂ)))]

—ux - E [uy + % (xe)‘x —E[XeM] -

— % (E[X%"X] — px - E[XeM] — %E[Xe”(] + ";E[e”fo
= § E [(X2 — (px + i)X + “AX)eAX] . (A.4)
O
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B Proof of Proposition 2

Proof. When the prey distribution is NBD, that is X ~ N B(r, p), its moments
are given as follows.

.
px = BIX]="1 (B.1)
14+
Blx?) = DETD N+ 2] (B.2)
P T
2 _ " _ X
0x = p2 = KX |:]- + r ] ’ (B3)
2.2
E[X? — rq{1+q+?;7“q+r q’]
p
2
_ MX[1+LX} {1+(3++ THx )MX], (B.4)
T+ ux
B[] = [1+ B ] s (B.5)
—(r+1)
E[XeM] = puxe [1+ ’LXu —eA)] , (B.6)
2 AX px AR
E[X2eM] = o%e(1+rqe )[1—1——(1 e )}
—(r+2)
= uxe1+ #TX + pxe?) [1 + “%(1 - eA)} . (B.7)

Type (ii) From Proposition 1(ii) it is seen that

cr

g2 = HX
Coo(X.Y) =0k = T = cpux 1+ T} (B.8)

Type (iii) From Proposition 1(iii) and (B.1)—(B.4) it follows that

Cov(X,Y) = gE[X?’— px X2
¢ +q+3rq+r2q2] _rq rq(1+rq)
S22 p P2
g —|—q+2rq]
_ -
1
— cux [1+“—X} [+MX+”X]. (B.9)
T 2 T
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Type (iv) From Proposition 1(iv) together with (B.1)—(B.6) it follows that
Cov(X,Y) = ; E {(X - MX)e)‘X]

_ ¢ A BX A (1) BX AT
= T lxea+ B -eY) (14 B (1 =)

= Sux [P -+ a1+ - e

—(r+1)
T ( )] +1
]— 1

= Tux( -1+ 1+ B¢

crq(er — 1) q A\
i A S I 5 T

— cux [1 + MTX} (eA; D [1 + ’UTX(l - eA)} R (B.10)

:|—(7’+1)
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Type (v) From Proposition 1(v) together with (B.1)—(B.7) it follows that

Cov(X,Y) = °E (X% = (ux + l)X + 'M—X)e)‘X
A A A
¢ 2 AX 1 AX . HX e AX
= C (BN - (uy + DEXA] 4 EX g
A A A
— fl2 by BX a7
= )\{UXe (1+rqe)[1+ 7“(1 e)]
1 —(r+1)
—(px + X),uXe’\ [1 + MTX(l — e’\)] +
Ex PX g _eMT
+5 [1+ X(1-e )} }
BN PR SR I
= 1+ B -y x

X [)\pe’\(l +rqe?) — (Arq + p)(e* — ge®) + (1 — qe’\)Q}

- £ [1+q(1—&) x

A [ p
X [1 +[(Ap—1) — g\ +1)]e* + [\ + 1]q62’\}

} —(r+2)

= ;;53 [(()\r + 1)get — 1) (€ —1)+ )\peA} [1 N %(1 - eA)] —(r+2)
- [(”X(A+i)etuf—1> (6’\—1)—1—)\6’\}

<1+ B -] R (B.11)

O
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