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Abstract

In contingent valuation studies regarding willingness to pay (WTP) the
respondents usually give an exact value as his/her WTP-value. Unfor-
tunately, the non-response rate has a tendency to be quite high. As
an attempt to reduce that rate the respondents will have a possibility
to give a self-selected interval instead of a fixed value as their WTP.
In this paper we will study different approaches to estimate the mean
willingness to pay under these conditions. First we consider the non-
parametric and a parametric approach where the intervals are treated
as if the respondent gives an exact value but we cannot observe it. Next
we will give a different interpretation of the intervals: Included in the re-
spondent’s answer is information about his/her uncertainty about what
would be a reasonable value of WTP. For illustration purposes we will
use data from a small study in Bollnäs municipality. In all three situa-
tions we first estimate the mean WTP and its standard error for those
giving a positive answer and finally we add zero-responses.

Keywords: Willingness to pay, cost-benefit analysis, self-selected interval,
triangle distribution, self-consistent estimate, contingent valuation.
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1 Introduction
The development of methods to measure willingness to pay (WTP) has re-
newed interest in cost-benefit analysis (CBA) for the economic evaluation of
health care programs and environmental issues. We may ask how much people
are willing to pay for changes in environmental quality. It depends of course on
the individuals’ preferences and their income. The preferences are summarized
in a utility function u and the willingness to pay is defined as

u(y0, z) = u(y1, z − WTP ). (1)

Here y0 denotes current environmental quality, y1 improved environmental
quality, z income, and WTP the amount the individual is willing to pay for
improving environmental quality from y0 to y1.

Usually in contingent valuation (CV) studies regarding willingness to pay
the respondents give an exact value as his/her WTP-value. Unfortunately, the
non-response rate has a tendency to be quite high. As an attempt to reduce
that rate the respondents will have a possibility to give a self-selected interval
instead of a fixed value as their WTP.

The concept of self-selected intervals is closely related to interval-censored
failure time data in survival analysis. Censoring mechanisms can be quite com-
plicated and thus necessitate special methods of treatment. Different types of
interval-censored data have been studied. Gehan (1965), Turbull (1974, 1976)
and others considered “double-censoring", where an observation gets censored
“left and right". Groeneboom and Wellner (1992), Huang (1996) and others
studied the Type I interval-censored data (also called as current status data)
in which all observed intervals “include" either left- or right-censoring. In CV
it means that a single bounded dichotomous choice question records whether
a respondent’s WTP is either above or below a particular value. Interval-
censored data that include at least one finite interval are usually referred to as
Type II interval-censored data (Groeneboom and Wellner, 1992; Huang and
Wellner, 1997; Sun, 2005; Day, 2007). In CV it means that a respondent’s
WTP may also be recorded as falling in the interval between two particular
values. Readers are referred to Sun (2006) for the data types mentioned above.
Huang (1999) and Zhao et al. (2008) considered the partly interval-censored
failure time data where observed data include both exact and interval-censored
observations on the survival time of interest. Recently Jammalamadaka and
Mangalam (2003) introduced the concept of “middle censoring" which occurs
when an observation becomes unobservable if it falls inside a random interval.

In this paper we will study three different approaches to estimate the
mean willingness to pay under these conditions. First we consider the non-
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Figure 1: WTP survey data from Bollnäs municipality with 135 responses. Left
panel: the 47 interval responses with interval lengths and boundary positions, where
the observations are ordered from the lowest left boundary to the highest one; Right
panel: the 36 point responses

parametric and a parametric approach where the intervals are treated as if the
respondent gives an exact value but we cannot observe it. Next we will give a
different interpretation of the intervals: Included in the respondent’s answer
is information about his/her uncertainty about what would be a reasonable
value of WTP. For illustration purposes we will use data from a small study in
Bollnäs municipality. In all three situations we first estimate the mean WTP
for those giving a positive answer, then the standard error of the estimates,
and finally we add zero-responses.

2 Data description
Survey data from Bollnäs municipality on willingness-to-pay for improvements
in Bollnäs river are collected, where respondents have the opportunity to give
an interval answer. In a web survey with 135 responses, 36 gave point numbers,
47 selected interval-answers, and the rest was zero-responses. The sample size
is thus n = 135. The data are shown in Figure 1, where the mean of point
data is 482.25 and standard deviation is 639.98, and the mean of middle point
of intervals is 495.09.
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Table 1: The estimated CDF using SCE based on Bollnäs data

Value 1 10 50 100 150 200 300
Prob 0.0132 0.0536 0.1107 0.2881 0.4916 0.601 0.6747
Value 400 500 600 1000 2500 3000
Prob 0.6946 0.7762 0.8238 0.9268 0.9878 1

3 WTP estimation

3.1 Non-parametric

First we will treat the non-parametric situation. Assume that the willingness
to pay X follows a distribution given by the distribution function F , which
takes values in the interval (0, ∞). After rearranging the data (if necessary)
such that the first n1 are exact observations (Xi) and the rest n2 are intervals
(Li, Ri) with n1 + n2 = n, we have the following observed data:

X1, X2, . . . , Xn1 , (Ln1+1, Rn1+1), (Ln1+2, Rn1+2), . . . , (Ln1+n2 , Rn1+n2). (2)

The likelihood L(F ) can be written as follows:

L(F ) =
n1∏
i=1

[F (Xi) − F (Xi−)]
n∏

i=n1+1
[F (Ri) − F (Li)]. (3)

The nonparametric maximum likelihood estimate (NPMLE) F̂n is the maxi-
mizer of L(F ) in the class of distribution functions on the line.

This situation with partially observed values in a non-parametric context
has been studied among others by Turnbull (1976) and by Jamalamadaka
and Mangalam (2003). Although the assumptions generating the intervals are
slightly different the likelihood function will be the same. We will follow the
approach by Jamalamadaka and Mangalam (2003) and obtain a self-consistent
estimate (SCE) of the distribution function. The estimated cumulative distri-
bution function (CDF) for the Bollnäs study is presented in Table 1, where
“Value" is the observed exact WTP value or interval boundaries, and “Prob"
is the probability P(X ≤ V alue).

Figure 2 shows the SCE and the empirical CDF (from R function “ecdf")
only for the point observations. It seems that the SCE usually gives greater
probabilities than the ECDF at the same points.

The expected willingness to pay is given by

E(X) =
∫

[1 − F (x)]dx.
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Figure 2: Estimation of F (x) by using the SCE and ECDF (for only point WTP)

Jammalamadaka and Mangalam (2003) established the strong consistency of
F̂n under some regularity conditions, i.e.

sup
x>0

|F̂n(x) − F (x)| → 0

with probability one as n → ∞. Thus it is natural to estimate the mean WTP
by

Ê(X) =
∫

[1 − F̂n(x)]dx.

In the same way the second order moments can be estimated by

Ê(X2) =
∫

[1 − F̂n(
√

x)]dx.

To ensure that the first and second order moments converge to the right value
it requires that F̂n is uniformly integrable, which is always satisfied if the
support is finite.

3.2 Parametric (Weibull)

Next the parametric approach is treated. The Weibull distribution is chosen
because of its flexibility. It can mimic the behavior of other statistical dis-
tributions such as the normal and the exponential. The density f of Weibull
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Figure 3: Estimation of F (x) by using the SCE, ECDF, and Weibull probabilities

distribution F with shape parameter κ > 0 and scale parameter λ > 0 is given
by

f(x; κ, λ) = κ

λ

(
x

λ

)(κ−1)
e−(x/λ)κ

, for x ≥ 0.

The mean is λΓ(1 + 1
κ) and the variance is λ2[Γ(1 + 2

κ) − Γ2(1 + 1
κ)].

When the data as in (2) are observed, the likelihood function L(X; κ, λ)
can be written as follows

L(X; κ, λ) =
n1∏
i=1

f(Xi; κ, λ)
n1+n2∏
i=n1+1

[F (Ri; κ, λ) − F (Li; κ, λ)]. (4)

Using the maximum likelihood estimator (MLE) from R STAR package and
others as starting values, the parameter (κ, λ) estimation always converges
to about (0.8613, 389.72). The probabilities of this Weibull distribution at
the same points are shown in Figure 3, together with the SCE and ECDF.
It is seen that Weibull usually gives smaller probabilities than the other two
densities at larger values of WTP.

3.3 Interval responses as a measure of uncertainty

In this section we will give a different interpretation of interval answers. We
assume that, because of a number of uncertainties, instead of giving an exact
value the answer is given by a random variable having a certain distribution,
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Figure 4: An example of triangular density with different modes

i.e. the WTP in equation (1) for individual i is given by Wi having mean value
Xi. (Of course the expected value is a constant but randomness occurs because
of the selection of individuals to the panel). Certainly the respondent cannot
give the answer as a distribution but has to approximate it by giving the lower
and upper value of the interval and it is default what kind of distribution the
respondent has in mind. The natural choices are a uniform distribution or a
triangular distribution. Although symmetric distributions are most natural
we will also consider triangular distributions with mode in the left or right
end of the interval. See Figure 4 for an example of triangular densities with
different modes.

For an interval observation [Li, Ri], the triangular distributions with Li as
the lower limit, Ri as the upper limit, and modes at Li,

Li+Ri
2 and Ri (denoted

as mode at 0, 0.5, and 1 in Tables 2-4) respectively, or a uniform distribution
are analyzed.

Suppose that the WTP for the ith respondent is Wi. After rearranging
the data as in (2), we have the following observed data:

Wi =
{

Xi, for exact responses i = 1, . . . , n1
Xi + εi, for interval responses i = n1 + 1, . . . , n1 + n2(= n) (5)

where Xi is the “true" or expected WTP for the respondent and εi is a random
variable, independent of Xi, that indicates the uncertainty in the answer.

As mentioned before, we assume that εi has a triangular distribution (with
different modes) or a uniform distribution. Intuitively, the wider an interval
one answers, the greater uncertainty a respondent has. In fact, for an interval
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Table 2: The estimates of mean WTP and their standard errors by the three
different methods without Zero-responses: nonparametric (SCE), parametric
(Weibull), and our method

Triangular dist. with mode at Uniform
SCE Weibull 0 0.5 1 distribution

WTP 464.9 420.6 436.5 489.5 542.5 489.5
s.e. 72.48 53.79 63.32 68.08 75.73 70.03

observation [Li, Ri], the variances for εi are (Ri−Li)2

18 , (Ri−Li)2

24 , (Ri−Li)2

18 , and
(Ri−Li)2

12 for a triangular distribution with mode at 0, 0.5, and 1,or a uniform
distribution, respectively.

Taking the interval uncertainty into account, the variance of the total WTP
is

V ar

[
n∑

i=1
Wi

]
= V ar

[
n∑

i=1
Xi

]
+V ar

 n∑
i=n1+1

εi

 = nV ar(X)+
n∑

i=n1+1

(Ri − Li)2

c
,

(6)
where

c =


12, for uniform distribution;
18, for triangular distribution with mode at 0 or 1;
24, for triangular distribution with mode at 0.5.

From (6) we can estimate the variance of mean WTP, V ar(W̄ ), by

V̂ ar(W ) = S2
X

n
+ 1

n2

n∑
i=n1+1

(Ri − Li)2

c
, (7)

where S2
X is the sample variance of {Xi}.

Table 2 presents the estimation results for mean WTP and it standard
error, using the three different methods: the nonparametric one based on
SCE, parametric based on Weibull distribution, and our method based on
uncertainty measure. We observe that the Weibull method has the lowest
standard error but the estimated WTP is also smallest, even less than the one
that assuming all the interval answers having the mode at the lower limits. So
the WTP seems to be underestimated. Whereas the WTP estimates with SCE,
the triangular distribution with mode at middle, and the uniform distribution
look reasonable, the triangular is favorable with its lower standard error.
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Table 3: The estimates of the standard errors for the two extreme cases

Triangular dist. with mode at Uniform
0 0.5 1 distribution

s.e.(I) 60.41 66.07 73.32 66.07
s.e.(II) 65.45 69.58 77.52 72.9

Table 4: The estimates of mean WTP and their standard errors by the three
different methods with Zero-responses

Triangular dist. with mode at Uniform
SCE Weibull 0 0.5 1 distribution

WTP 285.8 258.6 268.4 301.0 333.5 301.0
s.e. 44.56 33.07 37.14 40.62 45.08 40.62

To investigate the behavior of uncertainty in our WTP estimation, it would
be interesting to know how the standard error changes in the following two
extreme cases:

(I) The interval answers were replaced by their middle point so that we pre-
tend that we had only observed exact points.

(II) Opposite to Case I, we pretend that we had only observed intervals.

The standard errors estimated corresponding to these two cases are shown in
Table 3. The changing rate seems quite small, which implied that our estimate
of uncertainty is stable.

Table 4 presents similar information as Table 2, but with zero-responses
included. The results in Table 4 are easily obtained by multiplying the corre-
sponding information in Table 2 by a factor 83/135 (total number of non-zero
responses/total number of responses).

4 Discussion
Contingent valuation surveys frequently employ elicitation procedures that
return interval-censored data on respondent’s willingness to pay. In this
paper we introduce a new interpretation of CV interval-censored responses:
point and self-selected interval responses, which differs from Type II interval-
censoring or Middle censoring. A new model based on this interpretation is
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proposed. By using CV survey data from a small study in Bollnäs municipal-
ity, the mean WTP and its standard error were estimated and then compared
with a nonparametric approach based on SCE for middle censoring and a para-
metric approach based on Weibull distribution. Summarizing the results, one
can conclude that the parametric approach underestimates the WTP and the
SCE approach tends to underestimate the WTP and has also larger relative
standard error, compared to our method.

A closer look at Table 2 shows that the relative standard errors varies
from 12.8% for the Weibull approach to 15.6% for the non-parametric ap-
proach (SCE). The Weibull approach has the lowest relative standard error
but at the same time the estimate of mean willingness to pay is remarkably
smaller compared to the other methods. In fact it is even smaller than when
we assume that the individual’s uncertainty is given by triangular distribution
with mode at the left end of the reported interval. Thus there is an evident
risk that the Weibull distribution does not describe the data sufficiently well
and leads to biased estimates. Assuming a parametric model gives more struc-
ture to the problem and often also to lower standard errors of the estimates.
Unfortunately if there is no underlying knowledge about the chosen paramet-
ric model but it is chosen by other reasons e.g. flexibility the risk for biased
estimates is obvious.

The mean WTP estimate using the SCE approach (464.9) is lower than
the one based on symmetric distributions (triangular and uniform). It is also
worth noting that it is clearly lower than the sample mean WTP obtained from
those exact responses, which is 482.3. This indicates that the SCE approach
tend to underestimate the mean WTP. However, it’s not clear for us whether
this is a drawback in methodology itself.

The relative standard errors when we assume different triangular distri-
butions are all around 14%, which is lower than that obtained from the SCE
approach. It is interesting to compare the situation where it is assumed that
all respondents give an exact value or all give an interval. When interval un-
certainty is attributed to all respondents the standard errors increases form 5%
(symmetric triangular distribution) to 10% (uniform distribution) or with an-
other interpretation. To obtain the same precision the number of respondents
has to increase with 10% (symmetric triangular distribution) to 21% (uniform
distribution). One of the reasons to allow self-selected intervals was to reduce
the non-response rate. Usually, the non-respondents have other preferences
so to avoid bias a second small sample from the non-respondents should be
included in the study. Thus by increasing the sample size slightly and allow
self-selected intervals we guarantee a higher precision and may also avoid the
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need of a second sample.
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Figure 1: The interval and point data for WTP

In this paper we will study three different approaches to estimate the
mean willingness to pay under these conditions. First we consider the non-
parametric and a parametric approach where the intervals are treated as if the
respondent gives an exact value but we cannot observe it. Next we will give a
different interpretation of the intervals: Included in the respondent’s answer
is information about his/her uncertainty about what would be a reasonable
value of WTP. For illustration purposes we will use data from a small study in
Bollnäs municipality. In all three situations we first estimate the mean WTP
for those giving a positive answer, then the standard error of the estimates,
and finally we add zero-responses.

2 Data description

Survey data from Bollnäs municipality on willingness-to-pay for improvements
in Bollnäs river are collected, where respondents have the opportunity to give
an interval answer. In a web survey with 135 responses, 36 gave point numbers,
47 selected interval-answers, and the rest was zero-responses. The sample size
is thus n = 135. The data are shown in Figure 1, where the mean of point
data is 482.25 and standard deviation is 639.98, and the mean of middle point
of intervals is 495.09.
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Table 1: The estimated CDF using SCE

Value 1 10 50 100 150 200 300
Prob 0.0132 0.0536 0.1107 0.2881 0.4916 0.601 0.6747

Value 400 500 600 1000 2500 3000
Prob 0.6946 0.7762 0.8238 0.9268 0.9878 1

3 WTP estimation

3.1 Non-parametric

First we will treat the non-parametric situation. Assume that the willingness
to pay X follows a distribution given by the distribution function F , which
takes values in the interval (0,∞). After rearranging the data (if necessary)
such that the first n1 are exact observations (Xi) and the rest n2 are intervals
(Li, Ri) with n1 + n2 = n, we have the following observed data:

X1, X2, . . . , Xn1 , (Ln1+1, Rn1+1), (Ln1+2, Rn1+2), . . . , (Ln1+n2 , Rn1+n2). (2)

The likelihood L(F ) can be written as follows:

L(F ) =

n1∏
i=1

[F (Xi)− F (Xi−)]

n∏
i=n1+1

[F (Ri)− F (Li)]. (3)

The nonparametric maximum likelihood estimate (NPMLE) F̂n is the maxi-
mizer of L(F ) in the class of distribution functions on the line.

This situation with partially observed values in a non-parametric context
has been studied among others by Turnbull (1976) and by Jamalamadaka
and Mangalam (2003). Although the assumptions generating the intervals are
slightly different the likelihood function will be the same. We will follow the
approach by Jamalamadaka and Mangalam (2003) and obtain a self-consistent
estimate (SCE) of the distribution function. The estimated cumulative distri-
bution function (CDF) for the Bollnäs study is presented in Table 1, where
“Value” is the observed exact WTP value or interval boundaries, and “Prob”
is the probability P(X ≤ V alue).

Figure 2 shows the SCE and the empirical CDF (from R function ecdf)
only for the point observations. It seems that the SCE usually gives greater
probabilities than the ECDF at the same points.

The expected willingness to pay is given by

E(X) =

∫
[1− F (x)]dx.
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Figure 2: The SCE and ECDF (for only point WTP)

Jammalamadaka and Mangalam (2003) established the strong consistency of
F̂n under some regularity conditions, i.e.

sup
x>0

|F̂n(x)− F (x)| → 0

with probability one as n → ∞. Thus it is natural to estimate the mean WTP
by

Ê(X) =

∫
[1− F̂n(x)]dx.

In the same way the second order moments can be estimated by

Ê(X2) =

∫
[1− F̂n(

√
x)]dx.

To ensure that the first and second order moments converge to the right value
it requires that F̂n is uniformly integrable, which is always satisfied if the
support is finite.
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Figure 3: The SCE, ECDF and Weibull probabilities

3.2 Parametric (Weibull)

Next the parametric approach is treated. The Weibull distribution is chosen
because of its flexibility. It can mimic the behavior of other statistical dis-
tributions such as the normal and the exponential. The density f of Weibull
distribution F with shape parameter κ > 0 and scale parameter λ > 0 is given
by

f(x;κ, λ) =
κ

λ

(x
λ

)(κ−1)
e−(x/λ)κ , for x ≥ 0.

The mean is λΓ(1 + 1
κ) and the variance is λ2[Γ(1 + 2

κ)− Γ2(1 + 1
κ)].

When the data as in (2) are observed, the likelihood function L(X;κ, λ)
can be written as follows

L(X;κ, λ) =

n1∏
i=1

f(Xi;κ, λ)

n1+n2∏
i=n1+1

[F (Ri;κ, λ)− F (Li;κ, λ)]. (4)

Using the maximum likelihood estimator (MLE) from R STAR package and
others as starting values, the parameter (κ, λ) estimation always converges
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Figure 4: An example of triangular density with different modes

to about (0.8613, 389.72). The probabilities of this Weibull distribution at
the same points are shown in Figure 3, together with the SCE and ECDF.
It is seen that Weibull usually gives smaller probabilities than the other two
densities at larger values of WTP.

3.3 Interval responses as a measure of uncertainty

In this section we will give a different interpretation of interval answers. We
assume that, because of a number of uncertainties, instead of giving an exact
value the answer is given by a random variable having a certain distribution,
i.e. the WTP in equation (1) for individual i is given by Wi having mean value
Xi. (Of course the expected value is a constant but randomness occurs because
of the selection of individuals to the panel). Certainly the respondent cannot
give the answer as a distribution but has to approximate it by giving the lower
and upper value of the interval and it is default what kind of distribution the
respondent has in mind. The natural choices are a uniform distribution or a
triangular distribution. Although symmetric distributions are most natural
we will also consider triangular distributions with mode in the left or right
end of the interval. See Figure 4 for an example of triangular densities with
different modes.

For an interval observation [Li, Ri], the triangular distributions with Li as
the lower limit, Ri as the upper limit, and modes at Li,

Li+Ri
2 and Ri (denoted

as mode at 0, 0.5, and 1 in Tables 2-4) respectively, or a uniform distribution
are analyzed.

Suppose that the WTP for the ith respondent is Wi. After rearranging
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the data as in (2), we have the following observed data:

Wi =

{
Xi, for exact responses i = 1, . . . , n1

Xi + εi, for interval responses i = n1 + 1, . . . , n1 + n2(= n)
(5)

where Xi is the “true” or expected WTP for the respondent and εi is a random
variable, independent of Xi, that indicates the uncertainty in the answer.

As mentioned before, we assume that εi has a triangular distribution (with
different modes) or a uniform distribution. Intuitively, the wider an interval
one answers, the greater uncertainty a respondent has. In fact, for an interval

observation [Li, Ri], the variances for εi are (Ri−Li)
2

18 , (Ri−Li)
2

24 , (Ri−Li)
2

18 , and
(Ri−Li)

2

12 for a triangular distribution with mode at 0, 0.5, and 1,or a uniform
distribution, respectively.

Taking the interval uncertainty into account, the variance of the total WTP
is

V ar

[
n∑

i=1

Wi

]
= V ar

[
n∑

i=1

Xi

]
+V ar

[
n∑

i=n1+1

εi

]
= nV ar(X)+

n∑
i=n1+1

(Ri − Li)
2

c
,

(6)
where

c =


12, for uniform distribution;
18, for triangular distribution with mode at 0 or 1;
24, for triangular distribution with mode at 0.5.

From (6) we can estimate the variance of mean WTP, V ar(W̄ ), by

V̂ ar(W ) =
S2
X

n
+

1

n2

n∑
i=n1+1

(Ri − Li)
2

c
, (7)

where S2
X is the sample variance of {Xi}.

Table 2 presents the estimation results for mean WTP and it standard
error, using the three different methods: the nonparametric one based on
SCE, parametric based on Weibull distribution, and our method based on
uncertainty measure. We observe that the Weibull method has the lowest
standard error but the estimated WTP is also smallest, even less than the one
that assuming all the interval answers having the mode at the lower limits. So
the WTP seems to be underestimated. Whereas the WTP estimates with SCE,
the triangular distribution with mode at middle, and the uniform distribution
look reasonable, the triangular is favorable with its lower standard error.
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Table 2: The estimates of mean WTP and their standard errors by the three
different methods without Zero-responses: nonparametric (SCE), parametric
(Weibull), and our method

Triangular dist. with mode at Uniform
SCE Weibull 0 0.5 1 distribution

WTP 464.9 420.6 436.5 489.5 542.5 489.5

s.e. 72.48 53.79 63.32 68.08 75.73 70.03

Table 3: The estimates of the standard errors for the two extreme cases

Triangular dist. with mode at Uniform
0 0.5 1 distribution

s.e.(I) 60.41 66.07 73.32 66.07

s.e.(II) 65.45 69.58 77.52 72.9

To investigate the behavior of uncertainty in our WTP estimation, it would
be interesting to know how the standard error changes in the following two
extreme cases:

(I) The interval answers were replaced by their middle point so that we pre-
tend that we had only observed exact points.

(II) Opposite to Case I, we pretend that we had only observed intervals.

The standard errors estimated corresponding to these two cases are shown in
Table 3. The changing rate seems quite small, which implied that our estimate
of uncertainty is stable.

Table 4 presents similar information as Table 2, but with zero-responses
included. The results in Table 4 are easily obtained by multiplying the corre-
sponding information in Table 2 by a factor 83/135 (total number of non-zero
responses/total number of responses).

4 Discussion

Contingent valuation surveys frequently employ elicitation procedures that
return interval-censored data on respondent’s willingness to pay. In this
paper we introduce a new interpretation of CV interval-censored responses:
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Table 4: The estimates of mean WTP and their standard errors by the three
different methods with Zero-responses

Triangular dist. with mode at Uniform
SCE Weibull 0 0.5 1 distribution

WTP 285.8 258.6 268.4 301.0 333.5 301.0

s.e. 44.56 33.07 37.14 40.62 45.08 40.62

point and self-selected interval responses, which differs from Type II interval-
censoring or Middle censoring. A new model based on this interpretation is
proposed. By using CV survey data from a small study in Bollnäs municipal-
ity, the mean WTP and its standard error were estimated and then compared
with a nonparametric approach based on SCE for middle censoring and a para-
metric approach based on Weibull distribution. Summarizing the results, one
can conclude that the parametric approach underestimates the WTP and the
SCE approach tends to underestimate the WTP and has also larger relative
standard error, compared to our method.

A closer look at Table 2 shows that the relative standard errors varies
from 12.8% for the Weibull approach to 15.6% for the non-parametric ap-
proach (SCE). The Weibull approach has the lowest relative standard error
but at the same time the estimate of mean willingness to pay is remarkably
smaller compared to the other methods. In fact it is even smaller than when
we assume that the individual’s uncertainty is given by triangular distribution
with mode at the left end of the reported interval. Thus there is an evident
risk that the Weibull distribution does not describe the data sufficiently well
and leads to biased estimates. Assuming a parametric model gives more struc-
ture to the problem and often also to lower standard errors of the estimates.
Unfortunately if there is no underlying knowledge about the chosen paramet-
ric model but it is chosen by other reasons e.g. flexibility the risk for biased
estimates is obvious.

The mean WTP estimate using the SCE approach (464.9) is lower than
the one based on symmetric distributions (triangular and uniform). It is also
worth noting that it is clearly lower than the sample mean WTP obtained from
those exact responses, which is 482.3. This indicates that the SCE approach
tend to underestimate the mean WTP. However, it’s not clear for us whether
this is a drawback in methodology itself.

The relative standard errors when we assume different triangular distri-
butions are all around 14%, which is lower than that obtained from the SCE
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approach. It is interesting to compare the situation where it is assumed that
all respondents give an exact value or all give an interval. When interval un-
certainty is included to all respondents the standard errors increases form 5%
(symmetric triangular distribution) to 10% (uniform distribution) or with an-
other interpretation. To obtain the same precision the number of respondents
has to increase with 10% (symmetric triangular distribution) to 21% (uniform
distribution). One of the reasons to allow self-selected intervals was to reduce
the non-response rate. Usually, the non-respondents have other preferences
so to avoid bias a second small sample from the non-respondents should be
included in the study. Thus by increasing the sample size slightly and allow
self-selected intervals we guarantee a higher precision and may also avoid the
need of a second sample.
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