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1 Introduction

Periodic phenomena are frequently observed in nature, with examples to be
found in climatology (Bloomfield et al., 1994), economics (Doran and Quilkey,
1972), geosciences (MacDonald, 1989), etc. In many biomedical experiments
the measurements of a physiological variable taken at different time points
show a certain periodic pattern (Tong, 1976).

There are two distinct yet broadly equivalent modes of time series analysis.
On the one hand are the time-domain methods, which deal mainly with the
autocovariance function and the cross-covariance functions of the series, and
lead towards the construction of structural or parametric models. On the
other hand are the frequency-domain methods of spectral analysis. These are
based on an extension of the methods of Fourier analysis which originate in the
idea that over a finite interval, any analytical function can be approximated,
to whatever degree of accuracy desired, by taking a weighted sum of sine and
cosine functions of different frequencies.

The origin of spectral analysis can be traced to the pioneering work of
Sir Arthur Schuster (Schuster, 1898) who introduced a numerical method for
spectrum analysis, the periodogram. Early works for testing the presence of
hidden periodicities in which the noise is Gaussian white noise include Schuster
(1898), Fisher (1929) and Hartley (1949). Later research focused more on
the detection of signal in the presence of colored noise. In this case, the
fundamental work was done byWhittle (1952) and Priestley (1962a,b). Walker
(1971) and Hannan (1973) were among other contributors to the theory of
periodogram estimation. For a review of a variety of spectral analysis methods
available, see e.g. Stoica and Moses (1997).

Most existing time series techniques are applicable to time series that are
stationary in some sense. A sequence of random variables {Xi}, (i = 1, 2, . . .)
is said to be (a) stationary to second order if, for every integer k, the expecta-
tions E(Xi), E(XiXi+k) (i > 0, i + k > 0) exist finitely and are independent
of i; (b) asymptotically stationary to second order if, for every integer k, the
expectations E(Xi), E(XiXi+k) (i > 0, i+k > 0) exist finitely and have finite
limits as i→ ∞; (c) stationary if the distribution function of (Xi+1, . . . , Xi+k)
is independent of i, for every positive integer k (Diananda, 1954). Although in
practise many signals show non-stationary behavior, most of non-stationary
time series can be transformed to stationary series.

In many signal processing problems involving multivariate random data
from a population the covariance must be estimated. If one has a priori knowl-
edge of structure in the true underlying covariance of the random process, this
information can be exploited in covariance estimation procedures. In some
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applications, the structure of the problem suggests that the underlying, true
covariance matrix is the Kronecker product of two valid covariance matrices.
If such a separability between matrices can be assumed, this dramatically re-
duces the number of parameters to be estimated. For example, let us consider
a process that varies in both time and space, and is measured on p locations
and n times. Then the covariance matrix has np(np + 1)/2 parameters. One
way to dramatically reduce the number of parameters is to assume space-time
separability. This model has only n(n+ 1)/2 + p(p+ 1)/2− 1 parameters.

While in many statistical problems the observations are independent, in
time series successive observations may be dependent, and the dependence may
depend on the position in the sequence. A sequence of r.v.s (X1, X2, . . . , Xn)
is said to be m-dependent if two sets (X1, X2 . . . , Xr), (Xs, Xs+1 . . . , Xn)
are independent, provided s − r > m (Hoeffding and Robbins, 1948). This
implies a banded covariance structure obtained by setting all covariances more
than m steps apart equal to zero. Such a structure was studied by Hoeffd-
ing and Robbins (1948), Diananda (1954), Cocke (1972), Berk (1973), Fergu-
son (1996), and, recently, by Andrushchenko et al. (2008) and Ohlson et al.
(2009). The assumption of such a covariance matrix is in many cases a nat-
ural assumption and is usually much more natural than the presumption of
independence between observations, which is frequently applied. It should be
noted, however, that Andrushchenko et al. (2008) and Ohlson et al. (2009)
allowed unequal variances and correlation coefficients. Such a situation differs
from standard time series assumptions and results in more parameters to be
estimated than in conventional time series.

This paper deals with a multivariate time series that is asymptotically
stationary to second order (or can be transformed to such) and that contains
a harmonic component.

The model is based on a spectral approach, under the assumption that
the observations are multivariate normally distributed. The case where the
univariate time series are independent and the covariance matrix of errors is
banded of order m is investigated in detail. Each univariate time series is
analyzed with a spectral method, and estimators are calculated via a modified
least-squares method. Finally, the banded covariance structure is explicitly
estimated via the maximum likelihood approach.

Basically, the algorithm attempts to: (1) identify the spectral peak in an
empirical spectrum of the time series data; (2) assign a harmonic component
to the spectral peak; (3) estimate a covariance matrix. The main aim is to
find reasonable explicit estimators for both for the mean (harmonic structure)
and the covariance matrix.
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The paper is organized as follows. Section 2 describes the model, while
Section 3 presents an estimation procedure. Section 3.1 deals with the har-
monic part, and a theorem about consistency of estimators is presented and
proved. Section 3.2 provides the algorithm for estimation of the banded co-
variance matrix. Here the proposed algorithm consists of maximizing a mod-
ified likelihood function via inserting the estimated parameters from previous
steps. Finally, Section 4 summarizes the paper. Some useful collections of
formulae are presented in the Appendices: classical harmonic regression and
periodogram analysis are reviewed in Appendix A; different Fourier transforms
are described in Appendix B; and Appendix C contains the main formulae re-
lated to matrix normal distribution, some further definitions, and the main
inequalities used throughout the paper.

2 Model

Unless otherwise stated, scalars and matrix elements are denoted by ordinary
letters, vectors by small bold letters, and matrices by capital bold letters.

For any square matrix A : n×n, Ak (k < n) represents the k×k submatrix
located in the top left-hand corner of A; A′ means the transpose of A, A−1

means the inverse of A, and |A| stands for the determinant of the matrix.
Let a matrix A : p× n be:

A = (aij) =

 a11 . . . a1n
...

. . .
...

ap1 . . . apn

 =
(
a1 : . . . : an

)
, aj =

 a1j
...
apj

 . (2.1)

To make the formulae more compact, we also use the following notation:

(ai : . . . : aj) = Ai:j , ak|i:j = ak|Ai:j . (2.2)

For any reasonable matrices, (A− cB)′(. . .) means (A− cB)′(A− cB).
Other notations are conventional: ”p.d.f.” for probability density function,

”i.i.d” for independent and identically distributed, ”LS” for least squares,
”ML” for maximum likelihood, ”RHS” for right-hand side.

As mentioned in the Introduction, the multivariate time series under con-
sideration is asymptotically stationary to second order or can be transformed
to stationary. To analyze such a time series that contains a harmonic compo-
nent, one can use a spectral approach. Classical harmonic regression together
with use of the periodogram as an estimator are presented in detail in Ap-
pendix A.
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We assume that the data form a matrix X = (xij) : p × n, where p is
the number of univariate time series and n is the number of observations in
each univariate time series. We also assume that X follows the matrix normal
distribution (see Appendix C.1) X ∼ Np,n(M,Σ,Ψ), where M = (mij) : p×n
describes the harmonic structure, Σ = (σij) : p × p describes the covariance
between rows, andΨ = (ψij) : n×n describes the covariance between columns.
As usual, we assume that both the covariance matrices are positive definite. It
is worth noting that the role of Σ and Ψ can be interchanged by considering
the transpose of X: if X ∼ Np,n(M,Σ,Ψ), then X′ ∼ Nn,p(M

′,Ψ,Σ).
The joint p.d.f. of X is given by

fX(X) = (2π)−np/2 |Σ|−n/2 |Ψ|−p/2

× exp
(
− 1

2
tr
(
Σ−1 (X−M) Ψ−1 (X−M)′

))
. (2.3)

The joint p.d.f. of X, considered as a function of the parameters Σ and Ψ (for
fixed observed X) will serve as the likelihood function. Some useful formulae
related to the matrix normal distribution are presented in Appendix C.1, where
we adopt the notation of Kollo and von Rosen (2005, Chapter 2.2).

We start from a model that consists of a sum of a finite number of sinu-
soids and a noise component. We allow the amplitudes of all fundamental
oscillations and the fundamental frequencies to be different for different uni-
variate time series. If the sampling times are taken to be equally spaced so
that t = 1, . . . , n, the model can be written as

xit =

q∑
k=1

(
Aik cos(ωikt) +Bik sin(ωikt)

)
+ εit, i = 1, . . . , p, t = 1, . . . , n.

(2.4)

Here Aik and Bik are unknown parameters, and ωik are unknown different
angular frequencies measured in radians per unit time. It is assumed here that
there are few (for example q) fundamental frequencies that are responsible for
a harmonic structure of time series. It is also assumed that errors, εit, are
normally distributed, but are not necessarily white noise.

Limiting the consideration to harmonic structure with q = 1, then:

xit = Ai cos(ωit) +Bi sin(ωit) + εit, i = 1, . . . , p, t = 1, . . . , n. (2.5)

We now have a set of p regression equations. By means of notation, the
model (2.5) can be transformed to:

yi = Ziβi + ui, i = 1, . . . , p, (2.6)
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with

yi = (xit)
′ =


xi1
xi2
...
xin

 : n× 1; ui = (εit)
′ =


εi1
εi2
...
εin

 : n× 1;

Zi =


cos(ωi) sin(ωi)
cos(2ωi) sin(2ωi)

...
...

cos(nωi) sin(nωi)

 : n× 2; βi =

(
Ai

Bi

)
: 2× 1. (2.7)

If ωi were known this model would coincide with classical linear seemingly un-
related regression (SUR) model (Zellner, 1962). A SUR model comprises sev-
eral individual relationships that are linked by the fact that their error terms
are correlated. Zellner (1962) has shown that by stacking the observations ei-
ther in the t dimension or for each i, the model (2.6) can be further transformed
to a single-equation regression model. The estimation then yields regression
estimators that are at least asymptotically more efficient than single-equation
least squares (LS) estimators. However, if any equation is misspecified, then
the entire β will be inconsistently estimated by this method. In this sense,
equation-by-equation LS provides some degree of robustness since it is not
affected by misspecification in other equations of the system. Therefore we
will limit ourselves to equation-by-equation estimation.

The model (2.5) can be rewritten in matrix form as:

X = M+E, (2.8)

where

M = βZ, β =


β′
1 0 . . . 0
0 β′

2 . . . 0
...

. . .
. . .

...
0 . . . 0 β′

p

 , Z =


Z′
1

Z′
2
...
Z′
p

 , (2.9)

with β : p×2p and Z : 2p×n, βi and Zi given by (2.7), and E = (εit) : p × n.
Thus, M can be presented as

M = (m1 : . . . : mn), mj =

 A1 cos(jω1) +B1 sin(jω1)
...

Ap cos(jωp) +Bp sin(jωp)

 , j = 1, . . . , n.

(2.10)
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Since Ai, Bi, ωi are all unknown, the model (2.8) is nonlinear in the
parameters. To estimate the harmonic component of the model, a modified
LS method can be used (see e.g. Appendix A for details).

So far, the covariance structure in the model has not been specified. This
is intentional. As far as the calculation of LS estimators is concerned, random
errors need not to be white noise.

The estimation of the covariance matrices is an important problem by
itself and is a crucial part of many signal processing algorithms. Two limiting
cases are worth mentioning. First, in multivariate statistics, the observations
in each row are frequently considered as i.i.d. Therefore Ψ is assumed to be
I, the identity matrix, and the estimation of Σ is of primary interest. For
the case when X ∼ Np,n(M,Σ, I), with Σ being a banded of order m, the
explicit estimators for the mean and for the covariance matrix were found
in Andrushchenko et al. (2008) (for m = 1) and Ohlson et al. (2009) (for
arbitrary m). It was also shown that estimation of the mean is not affected
by the covariance structure, whereas estimator of the mean itself is the part
of estimator of the covariance matrix.

Another limiting case corresponds to time series, where nearby observa-
tions are correlated, and is considered below. Here, it is reasonable to assume
that Ψ has a banded covariance structure of order m, i.e. all covariances more
thanm steps apart the main diagonal are equal to zero, ψij = 0 for |i−j| > m.
Moreover, we allow unequal variances and correlation coefficients:

Ψ =



ψ11 . . . ψ1,m+1 0 0 . . . 0

ψ21 . . . ψ2,m+1 ψ2,m+2 0
. . . 0

...
. . .

. . .
. . .

. . .
. . .

...
ψm+1,1 . . . . . . ψm+1,2m+1 0 . . . 0

0 ψm+2,2 . . . . . . ψm+2,2m+2
. . . 0

...
. . .

. . .
. . .

. . .
. . .

...
0 . . . 0 ψn−1,n−m−1 ψn−1,n−m . . . ψn−1,n

0 . . . 0 0 ψn,n−m . . . ψn,n


.

(2.11)

Such a situation differs from standard time series cases and results in more
parameters to be estimated. Next, we assume that each row or each uni-
variate time series is independent of the others, therefore Σ is I. With such
assumptions about the covariance matrices, X ∼ Np,n(M, I,Ψ).

The main aim is to find reasonable explicit estimators for both the mean
(harmonic structure) and the covariance matrix. As far as we limit the consid-
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eration to a harmonic structure with q = 1, we need to estimate 3p parameters
for the mean (Ai, Bi, ωi, i = 1, . . . , p) and 1

2(2n−m)(m+ 1) nonzero param-
eters for the banded covariance matrix. As we have p × n observations, with
both p and n being large enough, we are able to estimate all the parameters
for the harmonic structure and the covariance matrix explicitly.

3 Estimation

3.1 Estimation of the harmonic structure

We have shown in Section 2 that if each row in model (2.8) can be treated in-
dependently from other rows, regression techniques can be applied to estimate
parameters in each row.

A natural estimation procedure for each row is the following (with the
index indicating the row number omitted for convenience):

1. The Fast Fourier transform (see Appendix B for details) is used to cal-
culate the spectrum. Hidden periodicities are detected and estimated
by periodogram analysis. Namely, ω̂ is determined by maximizing the
periodogram

ω̂ = argmax
ω

I(ω), (3.1)

with the periodogram I(ω) given by

I(ω) =
2

n

∣∣∣ n∑
t=1

xt exp(iωt)
∣∣∣2. (3.2)

Here i is the imaginary unit, and for a complex variable z, |z|2 = zz∗,
where ∗ means conjugate.

2. The estimators of A and B are obtained by minimizing a modified resid-
ual sum of squares, U(A,B, ω), see Appendix A, (A.13) and (A.15), for
details:

Â(ω̂) =
2

n

n∑
t=1

xt cos(ω̂t), B̂(ω̂) =
2

n

n∑
t=1

xt sin(ω̂t). (3.3)

3. After that, the matrix M is estimated via (2.10) as M̂ = M(Â, B̂, ω̂).
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It might be expected that this procedure could be improved, by comput-
ing a weighted regression using the known or estimated covariance matrix or
residuals. However, Hannan (1973) has shown that asymptotically this is not
so, basically because the regression component is of nature of a signal sent
at one frequency, so that ultimately only the noise at that frequency matters.
Of course for finite sample sizes and a very irregular spectrum of X near ω̂
the influence of the covariance structure might be significant, even though
its influence vanishes asymptotically. However, the covariance structure of X
is unknown and has to be estimated. For simplicity we confine ourselves to
unweighted procedures.

For the case where errors are i.i.d. with E(ε2t ) = v < ∞ , Walker (1971)
has shown that the estimators Â, B̂, ω̂, and v̂ are all consistent as n → ∞.
Here we prove the consistency of Â, B̂, and ω̂ when errors are m-dependent.
Estimation of the covariance structure is given in Section 3.2.

Theorem 3.1. For each row in X, let

xt = A0 cos(ω0t) +B0 sin(ω0t) + εt (0 < ω0 < π, t = 1, . . . , n), (3.4)

where the index 0 is used to indicate true value, εt are m-dependent normally
distributed with E(εt) = 0 and E(ε2t ) = v < ∞ , whereas E(εtεk) < v < ∞
for |t−k| ≤ m and E(εtεk) = 0 for |t−k| > m. Then the estimators Â, B̂, ω̂
are all consistent as n→ ∞.

It is worth remembering that the index, indicating the row number has
been omitted for convenience, and each row is treated separately. The generic
notation ”v” is different for each row i and, formally, v ≡ ψii.

Proof. First, we show that ω̂ is a consistent estimator of ω0, namely we show
that ω̂ − ω0 = op(n

−1) as n → ∞. We then use this to prove the consistency
of Â and B̂.

We start from the definition of the periodogram, and use

A0 cos(ω0t) +B0 sin(ω0t) = D0 exp(iω0t) +D∗
0 exp(−iω0t), (3.5)

where

D0 =
1

2
(A0 − iB0), D∗

0 =
1

2
(A0 + iB0). (3.6)

Next, we introduce a function

h(u) =
n∑

t=1

exp(iut) =

{
sin(nu/2)
sin(u/2) exp

(
i(n+1)u

2

)
(0 < u < 2π),

n (u = 0 or 2π).
(3.7)
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Then, from definition (3.2) of I(ω), with xt being given by (3.4),

n

2
I(ω) =

∣∣∣ n∑
t=1

xt exp(iωt)
∣∣∣2

=
∣∣∣ n∑
t=1

exp(iωt)
(
D0 exp(iω0t) +D∗

0 exp(−iω0t) + εt

)∣∣∣2
=
∣∣∣ n∑
t=1

exp(iωt)
(
D0 exp(iω0t) +D∗

0 exp(−iω0t)
)∣∣∣2 + ∣∣∣ n∑

t=1

εt exp(iωt)
∣∣∣2

+ 2ℜ
{ n∑

t=1

εt exp(−iωt)
(
D0 h(ω + ω0) +D∗

0 h(ω − ω0)
)}
, (3.8)

where ℜ means the real part of the expression.
Using (3.7), the first term on the RHS of (3.8) can be transformed to:∣∣∣ n∑

t=1

exp(iωt)
(
D0 exp(iω0t) +D∗

0 exp(−iω0t)
)∣∣∣2

=
∣∣∣D0h(ω + ω0) +D∗

0h(ω − ω0)
∣∣∣2

=
∣∣D0

∣∣2(|h(ω − ω0)|2 + |h(ω + ω0)|2
)

+D2
0 h(ω + ω0)h

∗(ω − ω0) +D∗2
0 h(ω − ω0)h

∗(ω + ω0). (3.9)

Since 0 < ω0 < π, (3.7) implies that:

max
0≤ω≤π

|h(ω − ω0)| = n, max
0≤ω≤π

|h(ω + ω0)| = O(1). (3.10)

Therefore the RHS of (3.9) is dominated by
∣∣D0

∣∣2|h(ω − ω0)|2, resulting in

∣∣∣ n∑
t=1

exp(iωt)
(
D0 exp(iω0t) +D∗

0 exp(−iω0t)
)∣∣∣2 = ∣∣D0

∣∣2|h(ω − ω0)|2 +O(n).

(3.11)
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The second term on the RHS of (3.8) can be estimated as:∣∣∣ n∑
t=1

εt exp(iωt)
∣∣∣2 = n∑

t=1

εt exp(iωt)

n∑
τ=1

ε∗τ exp(−iωτ)

=
n∑

t=1

n∑
τ=1

εtετ exp(iω(t− τ)) =
n∑

t=1

ε2t + 2
n−s∑
t=1

n−1∑
s=1

εtεt+s exp(−iωs)

≤
n∑

t=1

ε2t + 2

n−1∑
s=1

∣∣∣ n−s∑
t=1

εtεt+s

∣∣∣, (3.12)

with the expectation being:

E
∣∣∣ n∑
t=1

εt exp(iωt)
∣∣∣2 ≤ E

( n∑
t=1

ε2t

)
+ 2

n−1∑
s=1

E
∣∣∣ n−s∑
t=1

εtεt+s

∣∣∣
C−S
≤ E

( n∑
t=1

ε2t

)
+ 2

n−1∑
s=1

(
E
( n−s∑

t=1

εtεt+s

)2)1/2
m−dep.
= E

( n∑
t=1

ε2t

)
+ 2

m∑
s=1

(
E

n−s∑
t,τ=1

εtεt+sετετ+s

)1/2
≤ nv + 2

m∑
s=1

(
(n− s)v2

)1/2
= v
(
n+ 2

n−1∑
r=n−m

r1/2
)

≤ v
(
n+ 2

∫ n

r=n−m
r1/2dr

)
= v
(
n+

4

3

(
n3/2 − (n−m)3/2

))
. (3.13)

Here, C−S means ”by the Cauchy-Schwarz inequality”, see formula (C.13)
in Appendix C, and m−dep. means ”taking into account m-dependence”.
Assuming large n and reasonablem and applying the Markov inequality (C.14)

to (3.13), with Z =
∣∣∣∑n

t=1 εt exp(iωt)
∣∣∣2, leads to the following:

vn ≥ EZ
Markov

≥ Cϵn P
(
Z ≥ Cϵn

)
, (3.14)

where Markov means ”by the Markov inequality”, see formula (C.14), and Cϵ

is any given constant. This means that for all ϵ > 0 there is a Cϵ = v/ϵ, such
that P

(
Z ≤ Cϵn

)
≥ 1− ϵ. According to (C.10) this implies that∣∣∣ n∑

t=1

εt exp(iωt)
∣∣∣2 = Op(n). (3.15)
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Note, that Walker (1971) obtained Op(n
3/2) here, because instead of (3.13) he

used an upper bound which was O(n3/2).
To estimate the third term of (3.8), we start with the following:

E
∣∣∣ n∑
t=1

εt exp(−iωt)
∣∣∣ ≤ E

∣∣∣ n∑
t=1

εt

∣∣∣ C−S
≤
(
E
( n∑

t=1

εt

)2)1/2
triangle

≤
(
E
( n∑

t=1

ε2t

))1/2
≤
(
nv
)1/2

. (3.16)

Here, triangle means ”by the triangle inequality”, see (C.15). Applying the
Markov inequality again, the last term on the RHS of (3.8) can be estimated
as:

2ℜ
{ n∑

t=1

εt exp(−iωt)
(
D0 h(ω + ω0) +D∗

0 h(ω − ω0)
)}

= Op(n
3/2). (3.17)

Combining all these estimators and taking into account (3.10) gives:

max
0≤ω≤π

(n
2
I(ω)− |D0|2 |h(ω − ω0)|2

)
= O(n) +Op(n) +Op(n

3/2), (3.18)

and, after using (3.6),

max
0≤ω≤π

(
I(ω)− 1

2n

(
A2

0 +B2
0

)
|h(ω − ω0)|2

)
= Op(n

1/2). (3.19)

The function |h(u)|2 = sin2(nu/2)/ sin2(u/2) (0 < u < 2π) decreases
monotonically from its absolute maximum of n2 at u = 0 to 0 at u = 2π/n,
and then oscillates between local maxima and minima. Thus, for any δ which
is sufficiently small,

max
|ω−ω0|≥δ/n

|h(ω − ω0)|2 ≤
sin2

(
δ
2

)
sin2

(
δ
2n

) , (3.20)

and therefore, for large n,

max
|ω−ω0|≥δ/n

I(ω) ≤ 1

2n

(
A2

0 +B2
0

) sin2 ( δ2)
sin2

(
δ
2n

) +Op(n
1/2). (3.21)

Thus, with probability tending to 1 as n→ ∞,

lim
n→∞

(
n−1 max

|ω−ω0|≥δ/n
I(ω)

)
≤ 1

2

(
A2

0 +B2
0

)
lim
n→∞

(
sin2

(
δ
2

)
n2 sin2

(
δ
2n

)) ≤ 1

2

(
A2

0 +B2
0

)
.

(3.22)
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On the other hand, from (3.10) and (3.19) it follows that

lim
n→∞

(
n−1I(ω0)

) p→ 1

2

(
A2

0 +B2
0

)
. (3.23)

This implies that:

P
(

max
|ω−ω0|≥δ/n

I(ω) ≤ I(ω0)
)
→ 1 as n→ ∞. (3.24)

Suppose ω̂ ∈ |ω − ω0| ≥ δ/n. Then max|ω−ω0|≥δ/n I(ω) = I(ω̂), and

P
(

max
|ω−ω0|≥δ/n

I(ω0) > I(ω0)
)
= P

(
I(ω̂) > I(ω0)

)
= 1 (3.25)

which contradicts (3.24). Thus, ω̂ ∈ |ω − ω0| < δ/n and

P
(
n|ω̂ − ω0| < δ

)
→ 1 as n→ ∞, (3.26)

Since δ can be arbitrarily small, the last expression is equivalent to

ω̂ − ω0 = op(n
−1) as n→ ∞. (3.27)

and, therefore ω̂ is a consistent estimator of ω0.
Now, we show that Â is a consistent estimator of A0 and B̂ is a consistent

estimator of B0. Using (3.3)-(3.7),

Â+ iB̂ =
2

n

n∑
t=1

xt exp(iω̂t)

=
2

n

n∑
t=1

(
D0 exp(iω0t) +D∗

0 exp(−iω0t) + εt

)
exp(iω̂t)

=
2

n

(
D0h(ω̂ + ω0) +D∗

0h(ω̂ − ω0)
)
+

2

n

n∑
t=1

εt exp(iω̂t). (3.28)

Thus:

|Â−A0 + i(B̂ −B0)| = |Â+ iB̂ − 2D∗
0|

≤ 2|D0|
n

(
|h(ω̂ + ω0)|+ |h(ω̂ − ω0)− n|

)
+

2

n

∣∣∣ n∑
t=1

εt exp(iω̂t)
∣∣∣.
(3.29)
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(3.10) implies that:

1

n
|h(ω̂ + ω0)|

p→ 0 as n→ ∞. (3.30)

As far as h(u) is continuous and differentiable on (0, u), with h(0) = n, then
one can apply the mean value theorem to h(u) to get:

|h(ω̂ − ω0)− h(0)|
|(ω̂ − ω0)|

= |h′(u)|. (3.31)

On the other side,

|h′(u)| =
∣∣∣( n∑

t=1

exp(iut)
)′∣∣∣ = ∣∣∣ n∑

t=1

t exp(iut)
∣∣∣ ≤ n∑

t=1

t < n2, (3.32)

and therefore, ∣∣∣ 1
n

(
h(ω̂ − ω0)− n

)∣∣∣ < n|ω̂ − ω0|. (3.33)

Together with consistency of ω̂, (3.27), this implies that:∣∣∣ 1
n

(
h(ω̂ − ω0)− n

)∣∣∣ p→ 0 as n→ ∞. (3.34)

From (3.15) it follows that the last term in (3.29) is Op(n
−1/2), and therefore:

∣∣∣ 1
n

n∑
t=1

εt exp(iω̂t)
∣∣∣ p→ 0 as n→ ∞. (3.35)

Finally,

|Â−A0 + i(B̂ −B0)|
p→ 0 as n→ ∞. (3.36)

A complex random variable converges to 0 if and only if its real and imaginary
parts converge to 0. Therefore:

Â
p→ A0 as n→ ∞, B̂

p→ B0 as n→ ∞, (3.37)

i.e., Â is a consistent estimator of A0 and B̂ is a consistent estimator of B0.
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3.2 Estimation of the covariance matrix Ψ

According to Section 2, X ∼ Np,n(M, I,Ψ), with Ψ being a banded matrix of

order m. The joint p.d.f. of X with M replaced by its estimator M̂ is given
by:

fX(X) = c |Ψ|−p/2 exp
(
− 1

2
tr
(
Ψ−1 (X− M̂)′ (X− M̂)

))
. (3.38)

Here c = (2π)−np/2 and M̂ = (m̂ij), with A, B and ω being replaced by their
estimators Â, B̂ and ω̂ (see (2.10), (3.3) and (3.1)). Below, the symbol ˆ over
M and m is omitted to make formulae easier to read.

To estimate the covariance matrix, we start with the fact that if X ∼
Np,n(M, I,Ψ), then X′ ∼ Nn,p(M

′,Ψ, I), and use the approach presented in
Andrushchenko et al. (2008) and Ohlson et al. (2009). We start from the
likelihood function as the product of marginal and conditional distributions
(see e.g. (C.7)). First, we maximize the first factor in the likelihood function
(marginal distribution with unstructured covariance matrix) and estimate the
parameters. Those parameters which also appear in the next factor of the
likelihood function (conditional part) are replaced by the estimators from the
previous part. The estimation proceeds in a similar manner until the param-
eters of the last factor have been obtained.

If the covariance matrixΨ : n×n is banded of orderm, then the submatrix
Ψm+1 : (m+ 1)× (m+ 1) is unstructured and the marginal distribution is:

X′
1:m+1 ∼ Nm+1,p(M

′
1:m+1,Ψm+1, Ip). (3.39)

The estimators of the elements of such a covariance matrix coincide with the
usual MLEs (k, j ≤ m+ 1):

ψ̂k,j =
1

p
(xk −mk)

′(xj −mj), ψ̂k,k =
1

p
(xk −mk)

′(xk −mk). (3.40)

For k = m+ 2, . . . , n, let us partition the covariance matrix as follows:

Ψk =

(
Ψk−1 ψk

ψ′
k ψkk

)
, (3.41)

where

ψk = ( 0, . . . , 0︸ ︷︷ ︸
k−m−1

, ψk,k−m, . . . , ψk,k−1︸ ︷︷ ︸
m

)′. (3.42)
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Then the conditional distribution can be written as:

x′
k|1:k−1 ∼ N1,p(m

′
k|1:k−1, ψk|1:k−1, Ip), (3.43)

with

mk|1:k−1 = mk +ψ
′
kΨ

−1
k−1(X1:k−1 −M1:k−1),

ψk|1:k−1 = ψkk −ψ′
kΨ

−1
k−1ψk. (3.44)

It can be simplified using a formula for the elements of the inverse of a matrix
and a definition of the determinant:(

Ψ−1
k

)
ij
=

(
(−1)i+j

C
(k)
ij

|Ψk|

)
ij

,

|Ψk| =
k∑

i=1

(−1)i+kψki C
(k)
ki = ψkk C

(k)
kk +

k−1∑
i=1

(−1)i+kψki C
(k)
ki

= ψkk|Ψk−1| −
k−1∑
i=1

k−1∑
j=1

(−1)i+jψki C
(k−1)
ij ψjk. (3.45)

Here C
(k)
ij are the minors of the matrix Ψk (the determinant of the matrix

formed by removing the ith row and the jth column of the matrix Ψk). It
should be noted that (3.45) is valid for any square matrix. Applying these
formulae to the banded covariance matrix of order m results in:

mk|1:k−1 = mk +

k−1∑
i=1

k−1∑
j=k−m

(xi −mi) (−1)i+j
C

(k−1)
ij

|Ψk−1|
ψjk

= mk +

k−1∑
i=1

k−1∑
j=k−m

(−1)i+j
C

(k−1)
ij

|Ψk−2|
(xi −mi) ψjk

|Ψk−2|
|Ψk−1|

= mk + (X̃k−1 − M̃k−1) β
(k−1) = M̃k + X̃k−1 β

(k−1),

ψk|1:k−1 = ψkk −
k−1∑

j=k−m

k−1∑
i=k−m

ψki (−1)i+j
C

(k−1)
ij

|Ψk−1|
ψjk

=
1

|Ψk−1|

(
ψkk|Ψk−1| −

k−1∑
j=k−m

k−1∑
i=k−m

ψki (−1)i+j C
(k−1)
ij ψjk

)
=

|Ψk|
|Ψk−1|

, (3.46)
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where

X̃k−1 = (x̃
(k−1)
k−m : . . . : x̃

(k−1)
k−1 ), x̃

(k−1)
j =

k−1∑
i=1

(−1)i+j
C

(k−1)
ij

|Ψk−2|
xi,

M̃k−1 = (m̃
(k−1)
k−m : . . . : m̃

(k−1)
k−1 ), m̃

(k−1)
j =

k−1∑
i=1

(−1)i+j
C

(k−1)
ij

|Ψk−2|
mi,

β(k−1) = (β
(k−1)
k−m , . . . , β

(k−1)
k−1 )′, β

(k−1)
j = ψjk

|Ψk−2|
|Ψk−1|

, (3.47)

and j = k −m, . . . , k − 1.
For k = m+ 2, . . . , n, the likelihood function is given by

Lk = Lm+1

k∏
i=m+2

Li|1:i−1

= Lm+1

k∏
i=m+2

c
(
ψi|1:i−1

)−p/2
exp
(
− 1

2ψi|1:i−1

(
xi −mi|1:i−1

)′(
. . .
))
,

(3.48)

and the likelihood has to be maximized with respect to (2k − m)(m + 1)/2
unknown parameters, namely, (m+ 1)(m+ 2)/2 parameters for unstructured
covariance submatrix, and (k −m− 1)(m+ 1) parameters in ψk and ψkk.

Instead of doing this directly, we use the sequential approach suggested
above. We start with k = m + 2 and represent the likelihood as (3.48).
The estimation starts with the unstructured covariance matrix, where the
estimators are given by (3.40), and proceeds with the next factor, inserting
estimators from the previous factor. For k = m+3, . . . , n, the likelihood (3.48)
can be presented as

Lk = Lk−1c
(
ψk|1:k−1

)−p/2
exp
(
− 1

2ψk|1:k−1

(
xk −mk|1:k−1

)′(
. . .
))
, (3.49)

and the parameters in Lk−1 are already estimated. The estimation proceeds
with the next factor, each time inserting estimators from the previous factor
until the parameters of the last factor have been obtained. This means that
for any k = m+2, . . . , n, we need to estimate only m+1 unknown parameters

(β
(k−1)
j , j = k −m, . . . , k − 1, and ψk|1:k−1). This results in:

β̂
(k−1)

=
(
(X̂k−1 − M̂k−1)

′(X̂k−1 − M̂k−1)
)−1

(X̂k−1 − M̂k−1)
′(xk −mk),

ψ̂k|1:k−1 =
1

p

(
xk −mk − (X̂k − M̂k) β̂

(k−1))′(
. . .
)
, (3.50)
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where

X̂k−1 = (x̂
(k−1)
k−m : . . . : x̂

(k−1)
k−1 ), x̂

(k−1)
j =

k−1∑
i=1

(−1)i+j
Ĉ

(k−1)
ij

|Ψ̂k−2|
xi,

M̂k−1 = (m̂
(k−1)
k−m : . . . : m̂

(k−1)
k−1 ), m̂

(k−1)
j =

k−1∑
i=1

(−1)i+j
Ĉ

(k−1)
ij

|Ψ̂k−2|
mi,

(3.51)

The estimators of initial parameters can be carried out from here. In
general, they can be written as:

ψ̂k,j = β̂
(k−1)
j ψ̂k−1|1:k−2, (3.52)

ψ̂kk = ψ̂k|1:k−1 + ψ̂
′
kΨ̂

−1
k−1ψ̂k, (3.53)

with ψ̂k being given by (3.42) with ψk,j replaced by their estimators ψ̂k,j ,
(3.52).

4 Conclusions

In this paper, we have presented a way of dealing with a multivariate time se-
ries that contains a harmonic component, under the condition that covariance
structure is banded of order m. An algorithm consists of first estimating the
harmonic structure and then using these estimates in estimating the banded
covariance matrix. Our analysis of the properties of estimators of the harmonic
part revealed that the estimators of parameters describing the harmonic struc-
ture are all consistent. Explicit analytical estimators for the elements of the
banded covariance matrix are presented.

The main contribution of this article is finding the reasonable explicit es-
timators for both the mean (harmonic structure) and the covariance matrix.
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A Classical harmonic regression and periodogram

In the statistical analysis of time series, Fourier methods are used to discover
and analyze the regularity or periodicity in data. The most popular way of
performing frequency analysis has been to apply the fast Fourier transform
(FFT), see Appendix B, to the data. FFT allows the separation of various
rhythms and an estimation of their frequencies independently of each other, a
difficult task to perform visually if several rhythmic activities occur simulta-
neously.

The basis of frequency domain (Fourier) analysis for time series is the
spectral representation theorem for stationary processes (see Brockwell and
Davis (1991, Sect.4) for details). Roughly, the theorem says that one may
think of a stationary time series as being formed by a general mean µ, a
harmonic component consisting of the sum of finite number of sinusoids with
angular frequencies ωk and a noise component ε. If the sampling times are
taken to be equally spaced, so that t = 1, . . . , n and x(t) = xt, the model
becomes:

xt = µ+

q∑
k=1

(
Ak cos(ωkt) +Bk sin(ωkt)

)
+ ε, 0 ≤ ωk ≤ π, (A.1)

where ωk, k = 1, ..., q are different angular frequencies, and Ak and Bk are mu-
tually uncorrelated, mean-zero random variables. Ideally, q is small and the ωk

are well separated. The reason for restricting ωk to the range (0, π) is that for
a discrete process measured at unit intervals of time, the variation at frequen-
cies higher than π cannot be distinguished from variation at a corresponding
frequency in (0, π). The frequency ω = π is called the Nyquist frequency.
For a discrete process measured at intervals of time of length ∆t, the Nyquist
frequency is π/∆t. In general, the Nyquist frequency is half the sampling fre-
quency of a discrete signal processing system. The Nyquist-Shannon sampling
theorem (Shannon, 1949) states that perfect reconstruction of a signal is pos-
sible when the Nyquist frequency exceeds the highest frequency of the signal
being sampled. If lower sampling rates are used, the original signal may not
be completely recoverable from the sampled signal.

In the case when all the frequencies are known, the model (A.1) becomes
linear in parameters θ = (µ, A1, B1, . . . , Aq, Bq)

′. Thus, the harmonic
model is a special case of the classical linear regression model. Therefore the
method of ordinary LS produces asymptotically best linear unbiased estima-
tors, regardless of the covariance structure of ε. When the maximum period
is known and data cover few replicates of this fundamental period, then LS
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estimators (LSEs) become

µ̂ =
1

n

n∑
t=1

xt, Âk =
2

n

n∑
t=1

xt cos(ωkt), B̂k =
2

n

n∑
t=1

xt sin(ωkt), k = 1, . . . , q.

(A.2)

If the underlying frequencies are unknown, Schuster’s periodogram can
be used to estimate them. Schuster’s periodogram is based on a model of a
mean-zero process xt, which has a harmonic component consisting of the sum
of finite number (say, q) of sinusoids with unknown angular frequencies ωk and
a noise component ε:

xt =

q∑
k=1

(
Ak cos(ωkt) +Bk sin(ωkt)

)
+ ε, (A.3)

where ε is a purely random process that has a vanishing mean and constant
variance, E[ε] = 0, E[ε2] = v < ∞. Given n observations of xt, the problem
is to determine the set of unknown parameters q, Ak, Bk, ωk, v (k = 1, . . . , q).

Schuster’s periodogram, I(ω), is defined as:

I(ω) =
2

n

((∑
xt cos(ωt)

)2
+
(∑

xt sin(ωt)
)2)

=
2

n

∣∣∣ n∑
t=1

xt exp(iωt)
∣∣∣2.
(A.4)

If the observed data are indeed periodic, the plot of the periodogram function
exhibits large positive values (the squares of the amplitudes associated with
the frequencies) at the true values of the underlying frequencies present in the
data, and at all the other points it is close to zero.

It is clear that the model (A.3) is nonlinear. It can be solved numerically
using the nonlinear least squares (NLS) method (see e.g. Stoica and Moses
(1997)).

The problem of estimating all the parameters in (A.3) was first dealt with
by Whittle (1952). He used a method of estimation that was approximately
equivalent to the LS. His argument is illustrated by considering a process with
a single sinusoid, q = 1,

xt = A cos(ωt) +B sin(ωt) + ε. (A.5)

One forms the regression sum of squares, S(A,B, ω), as if ω were known:

S(A,B, ω) =
n∑

t=1

(
xt −A cos(ωt)−B sin(ωt)

)2
, (A.6)
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Then the ”LS” estimators of A and B are obtained by the equations:∑
xt cos(ωt)− Ã

∑
cos2(ωt)− B̃

∑
sin(ωt) cos(ωt) = 0,∑

xt sin(ωt)− Ã
∑

sin(ωt) cos(ωt)− B̃
∑

sin2(ωt) = 0, (A.7)

and, since
∑

sin(ωt) cos(ωt) ≈ 0 and
∑

cos2(ωt) ≈
∑

sin2(ωt) ≈ n/2 , the
solutions become:

Ã =
2

n

n∑
t=1

xt cos(ωt), B̃ =
2

n

n∑
t=1

xt sin(ωt). (A.8)

Now, the angular frequency, ω, is also an unknown parameter the least squares
estimate of which, ω̂, is yielded by the equation

ω̂ = argmin
ω

(
S(Ã, B̃, ω)

)
. (A.9)

With some rearrangement, it is found that S(Ã, B̃, ω) =
∑
x2t − n

2 (Ã
2 + B̃2),

so that the estimation equation for ω is in effect:

ω̂ = argmax
ω

(n
2

(
Ã2 + B̃2

))
= argmax

ω

((∑
xt cos(ωt)

)2
+
(∑

xt sin(ωt)
)2)

.

(A.10)

Thus, ω̂ corresponds to the greatest ordinate of the periodogram (A.4), and
the magnitude of this ordinate provides the least squares estimate of A2+B2,
the amplitude of the component. Whittle (1952) argued that the periodogram
gives the best estimates of the frequencies in the LS sense. On practise, the
most popular way to estimate the frequency ω is to apply the (radix-2) FFT
algorithm directly to the data (or to the data with zero padding).

Walker (1971) gives an rigorous proof of Whittle’s statements concerning
the asymptotic distribution of the estimators for the case of independent errors.
He used a method of estimation that was approximately equivalent to the LS,
becoming approximately the method of ML estimation when ε has a normal
distribution so that xt becomes a normal or Gaussian process.

If the errors are normally distributed, the log-likelihood function of the
observation x1, x2, . . . , xn is:

L(A,B, ω, σ2) = −n
2
log(2πv)− 1

2v
S(A,B, ω), (A.11)

where S is the regression sum of squares:

S(A,B, ω) =
n∑

t=1

(
xt −A cos(ωt)−B sin(ωt)

)2
, (A.12)
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The estimators of A,B and ω are thus obtained by minimizing the residual
sum of squares S, and the estimator of v is equal to the minimum sum of
squares divided by n.

Calculation of the parameters minimizing S is simplified if the sampling
times are taken to be equally spaced, so that t = 1, 2, . . . , n. It is also easier
to proceed in this case by introducing a new function:

U(A,B, ω) =

n∑
t=1

x2t − 2

n∑
t=1

xt
(
A cos(ωt) +B sin(ωt)

)
+
n

2
(A2 +B2). (A.13)

Since

S(A,B, ω)− U(A,B, ω) =
1

2

n∑
t=1

(
(A2 −B2) cos(2ωt) + 2AB sin(2ωt)

)
,

(A.14)

which is O(1) as n→ ∞ (provided ω ̸= 0, π), one can expect the effect on the
estimators to be negligible for large n provided that ω0, the true value of ω,
is not equal to 0 or π; so one restricts 0 < ω0 < π. Under these conditions,
minimization of U is equivalent to minimizing S.

If the estimates for A,B, and ω are denoted by Â, B̂, and ω̂, minimizing
U yields

Â =
2

n

n∑
t=1

xt cos(ω̂t), B̂ =
2

n

n∑
t=1

xt sin(ω̂t), (A.15)

provided the estimated frequency ω̂ is such that:

I(ω̂) = max
(
I(ω)

)
, (A.16)

where I(ω) is Schuster’s periodogram (A.4). Also,

v̂ =
1

n

( n∑
t=1

x2t − I(ω̂)
)
. (A.17)

Walker (1971) showed that the estimators Â, B̂, ω̂ and v̂ are all consistent as
n→ ∞.

The case in which the signal consists of a number of sinusoids is more
complex. For the case of q sinusoids, one gets the unsurprising result that
minimization drives all the ω̂k, k = 1, . . . , q, equal to the frequency at which
I(ω) obtains its maximum value. To prevent this, some condition such as:

min(|ω̂k − ω̂l|) ≥ 2π/n (A.18)
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should be placed on the frequencies.
A possible method is to proceed sequentially, first calculating the maximum

value of the periodogram, using e.g. FFT. Alternatively, one could use a coarse
FFT and follow that by a Newton-Raphson search for a maximum. Once ω̂1

is identified, estimates of the coefficients Â1 and B̂1 are obtained by:

Â1 =
2

n

n∑
t=1

xt cos(ω̂1t), B̂1 =
2

n

n∑
t=1

xt sin(ω̂1t). (A.19)

Term-by-term subtraction forms a new series x′t,

x′t = xt − Â1 cos(ω̂1t)− B̂1 sin(ω̂1t). (A.20)

The process is repeated successively, using subsequent estimates of ω̂k, k =
2, . . ..

B Fourier transforms

The Fourier Transform (FT) is a mathematical procedure used to transform
a signal defined in the time domain into one defined in the frequency domain.

The integral Fourier transform operates on continuous functions.
Given a function x(t) of a real variable t, the FT of x(t) is defined as:

X(ω) =

∫ ∞

−∞
x(t) exp(−iωt)dt, (B.1)

provided the integral exists for every real ω. A sufficient condition for X(ω)
to exist is

∫∞
−∞ |x(t)|dt < ∞. If (B.1) is regarded as an integral equation for

x(t) given X(ω), then:

x(t) =
1

2π

∫ ∞

−∞
X(ω) exp(iωt)dω, (B.2)

and x(t) is called the inverse FT of X(ω). The two functions x(t) and X(ω)
are commonly called a FT pair.

In practise, the FT cannot be applied directly if measurements are taken
only at discrete times. A modified form of the FT, known as the Discrete
Fourier Transform (DFT), is used in the case of sampled (discrete) signals.
When x(t) is only defined for integer values of t = 0, . . . , N − 1, then:

X(ω) =
∑
t

x(t) exp(−iωt), −π ≤ ω ≤ π (B.3)
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is the DFT of x(t). The inverse transform is:

x(t) =
1

2π

∫ π

−π
X(ω) exp(iωt)dω, t = 0, . . . , N − 1. (B.4)

When the DFT is applied to a discrete signal, the result is a set of sine and
cosine coefficients. When sine and cosine waves of appropriate frequencies are
multiplied by these coefficients and then added together, the original signal
waveform is exactly reconstructed. The procedure by which the sine and cosine
coefficients are calculated is straightforward in principle, although in practise
it requires a great deal of computation.

The Fast Fourier Transform (FFT) is a class of special algorithms which
implement the DFT with considerable savings in computational time. Func-
tionally, the FFT decomposes the set of data to be transformed into a series
of smaller data sets. Then, it decomposes those smaller sets into even smaller
sets. At each stage of processing, the results of the previous stage are combined
in special way. Finally, it calculates the DFT of each small data set.

By far the most common FFT is the Cooley-Tukey algorithm. The most
well-known use of it is to divide the set of size N into two pieces of size N/2 at
each step, and is therefore limited to power-of-two sizes, but any factorization
can be used in general. These are called the radix-2 and mixed-radix cases,
respectively. While it is possible to develop FFT algorithms that work with
any number of points, maximum efficiency of computation is obtained by
constraining the number of time points to be an integer power of 2.

The ratio between a DFT computation and a FFT one for the same N
is proportional to N/ log2(N). In many applications, N is not a power of 2
and hence the previously described radix-2 FFT algorithm cannot be applied
directly. However, one can increase the length of the given sequence by means
of zero padding, {x(1), . . . , x(N), 0, 0, . . .} until the length of the so-obtained
sequence is a power of 2.

Other Fourier transforms and series:
The finite Fourier transform converts one finite sequence of coefficients

into another sequence of the same length. The transform and its inverse are:

Xk =
N−1∑
j=0

xj exp
(
− i2π

N
kj
)
, k = 0, . . . , N − 1, (B.5)

xj =
1

N

N−1∑
k=0

Xk exp
( i2π
N

kj
)
, j = 0, . . . , N − 1. (B.6)

A Fourier series converts a periodic function f(x), with a period L, into
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an infinite sequence of Fourier coefficients cn:

cn =
1

L

∫ L/2

−L/2
f(x) exp(−inx)dx, n = 0, 1, . . . . (B.7)

With these coefficients, the complex form of the Fourier series is:

f(x) =
∞∑
n=0

cn exp(inx). (B.8)

The integral FT involves only integrals. The finite FT involves only finite
sums of coefficients. Fourier series and the DFT involve both integrals and
sequences. It is possible to turn any of the transforms into any of the others
by taking limits or restricting domains.

C Auxiliary results

C.1 Matrix normal distribution

Let the observation matrix be X : p× n.

Definition C.1 (Definition 2.2.1, Kollo and von Rosen (2005)). Let
Σ = σσ′ and Ψ = ψψ′, where σ : p × r and ψ : n × s. A matrix X : p × n
is said to be matrix normally distributed with parameters M, Σp, Ψn, if it
has the same distribution as M+σUψ′, where M : p× n is non-random and
U : r × s consists of s i.i.d. Nr(0, In) vectors Ui, i = 1, 2, . . . , s. If X : p× n
is matrix normally distributed, this will be denoted X ∼ Np,n(M,Σp,Ψn).

We note that Σ describes a covariance between rows (”spatial” covariance
structure), and Ψ describes a covariance between columns (”temporal” co-
variance structure). Then, if Ψ = In, the columns of X are independently
distributed; if Σ = Ip, the rows of X are independent. As usual, we assume
that both the covariance matrices are positive definite.

The joint probability density function of X is given by:

fX(X) = (2π)−np/2 |Σp|−n/2 |Ψn|−p/2

× exp
(
− 1

2
tr
(
Σ−1

p (X−M) Ψ−1
n (X−M)′

))
. (C.1)
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Let X, M, Σp, Ψ be partitioned as:

X =

(
X11 X12

X21 X22

)
:

(
r × s r × (n− s)

(p− r)× s (p− r)× (n− s)

)
,

M =

(
M11 M12

M21 M22

)
:

(
r × s r × (n− s)

(p− r)× s (p− r)× (n− s)

)
,

Σp =

(
Σ11 Σ12

Σ21 Σ22

)
:

(
r × r r × (p− r)

(p− r)× r (p− r)× (p− r)

)
,

Ψn =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
:

(
s× s s× (n− s)

(n− s)× s (n− s)× (n− s)

)
, (C.2)

and

X•1 =

(
X11

X21

)
, X•2 =

(
X12

X22

)
,

X1• =
(
X11 : X12

)
, X2• =

(
X21 : X22

)
,

M•1 =

(
M11

M21

)
, M•2 =

(
M12

M22

)
,

M1• =
(
M11 : M12

)
, M2• =

(
M21 : M22

)
. (C.3)

Lemma C.1 (Theorem 2.2.5, Kollo and von Rosen (2005)). Suppose
that Σ−1

22 and Ψ−1
22 exist. Then we have the conditional distributions:

X•1|X•2 ∼ Np,s

(
M•1 + (X•2 −M•2)Ψ

−1
22 Ψ21, Σ, Ψ1|2

)
,

X1•|X2• ∼ Nr,n

(
M1• +Σ12Σ

−1
22 (X2• −M2•), Σ1|2, Ψ

)
. (C.4)

Obviously, if Σ−1
11 and Ψ−1

11 exist, then

X•2|X•1 ∼ Np,n−s

(
M•2 + (X•1 −M•1)Ψ

−1
11 Ψ12, Σ, Ψ2|1

)
,

X2•|X1• ∼ Np−r,n

(
M2• +Σ21Σ

−1
11 (X1• −M1•), Σ2|1, Ψ

)
. (C.5)

Here

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21, Ψ1|2 = Ψ11 −Ψ12Ψ

−1
22 Ψ21,

Σ2|1 = Σ22 −Σ21Σ
−1
11 Σ12, Ψ2|1 = Ψ22 −Ψ21Ψ

−1
11 Ψ12, (C.6)

and we adopt the notation of Kollo and von Rosen (2005, Chapter 2.2).
Now the joint probability density function of X can be written as the

product of conditional and marginal distributions:

fX(X) = f(X•1) f(X•2 | X•1) = f(X1•) f(X2• | X1•). (C.7)

The probability density function considered as a function of the parameters
M, Σp and Ψn (for fixed observed X) will serve as the likelihood function.
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C.2 O(. . .) and o(. . .)

The notations O(. . .) and o(. . .) are used to describe the limiting behavior of a
function for very large arguments. Suppose f(x) and g(x) are two functions de-
fined on some subset of the real numbers. One says f(x) = O(g(x)), as x→
∞, if there exist a positive real number C and a real number x0 such that

|f(x)| ≤ C|(g(x)| for all x > x0. (C.8)

The relation f(x) ∈ o(g(x)) means that f(x) becomes insignificant relative to
g(x) as x approaches infinity. Formally, it states that:

lim
f(x)

g(x)
= 0, as x→ ∞. (C.9)

Similarly, the notationsOp(. . .) and op(. . .) are used to describe the limiting
behavior of an r.v. as the number of observations tends to infinity (n → ∞):
Zn = Op(n

α) if for all ϵ > 0 there exist Cϵ > 0 such that:

P
(
|Zn| ≤ Cϵn

α
)
≥ 1− ϵ for all n; (C.10)

Zn = op(n
α) means an r.v. such that for any ϵ > 0:

P
(
n−α|Zn| > ϵ

)
= 0 as n→ ∞. (C.11)

The notation op(1) is useful in showing the consistency of estimators (see e.g.

Cox and Hinkley (1974, Ch.9)): an estimator θ̂ is consistent for θ if:

θ̂ = θ + op(1) ⇐⇒ P
(
|θ̂ − θ| > ϵ

)
→ 0 as n→ ∞ ⇐⇒ θ̂

p→ θ. (C.12)

C.3 Some important inequalities

Inequality C.1 (The Cauchy-Schwarz inequality). Suppose that X and

Y have finite variances, and ∥X∥r =
(
EXr

)1/r
, r > 0, is a norm. Then:

|EXY | ≤ E|XY | ≤ ∥X∥2 · ∥Y ∥2 =
(
EX2EY 2

)1/2
. (C.13)

Inequality C.2 (The Markov inequality). Suppose that E|X|r < ∞ for
some r > 0, and let x > 0. Then:

P (|X| ≥ x) ≤ E|X|r

xr
. (C.14)

Inequality C.3 (The triangle inequality). For x, y ∈ Rn, with Rn being
a real number space, the standard triangle inequality states that:

|x+ y| ≤ |x|+ |y|. (C.15)

28


