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Abstract
This work presents an empirical approach to modeling Swedish electricity
prices, where the expected mean price will be independent of past prices. Linear
regression is used for modeling the mean price and autoregressive time series
models for describing the behavior of the regression residuals. The estimated
model can be used for investigating what influence the explanatory variables
in the regression model have on the Swedish area price.

1 Introduction
In this article we consider weekly electricity prices for Sweden for 2000–2009. The
main purpose is to obtain a model for the electricity prices which enables to describe
the behavior of the prices far in the future. Electricity in Nordic countries is traded
at the Nordic electricity exchange Nord Pool Spot, which covers Norway, Sweden,
Finland, Denmark, and from April 2010 also Estonia. At Nord Pool Spot electricity
is traded for each hour of the following day. It is a day-ahead market. At first, a
“system” price is calculated for every hour. This is determined by the cut point of
the demand curve (all the purchase bids) and the supply curve (all the sale offers).
System price is the common theoretical price for the whole Nordic area, if there were
no transmission limitations or “bottlenecks”. Due to physical limitations of trading
capacities, the Nordic area is divided into bidding areas and an “area” trading price
is calculated for each region. Norway and Denmark have been divided internally, but
not Finland and Sweden (so far). The Nordic electricity market is very diversified, be-
cause electricity generation techniques vary across countries. In Norway, basically all
electricity comes from hydropower. In Sweden, about 90% is generated by hydropower
and nuclear power (in 2008, 47% and 42%, respectively). Finland has a mixture of
hydro-, nuclear and thermal energy and Denmark has mainly thermal power. In 2008,
57% of electricity in the Nordic area was produced from hydropower and 21% from
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nuclear power. Therefore, the amount of precipitation, and weather in general, is an
influential factor for Nordic electricity prices. For a complete overview of Nord Pool
Spot, see http://www.nordpoolspot.com. A good overview of the Nordic electricity
market and influential factors to the Nordic electricity prices is given in a report by
the Swedish Energy Markets Inspectorate (Energimarknadsinspektionen, 2006). In
this report also the prices of natural gas, carbon and oil have been pointed out as
factors that impact the Nordic electricity prices.

There are different approaches to modeling electricity products at Nord Pool.
Both univariate and multivariate models exist. Lucia and Schwarz (2002) describe
the behavior of the spot price in terms of two types of components: the first compo-
nent is a totally predictable deterministic component that accounts for example for a
deterministic trend and any periodic behavior, the second, the stochastic component,
is assumed to follow a continuous time diffusion process. Weron et al. (2003) propose
a mean reverting jump diffusion model for the spot price, since spot prices are in
general regarded to be mean reverting. Deng (2006) studies in his doctoral thesis
various financial aspects of the spot and futures/forward markets at the Nord Pool
power exchange. In his Essay II he considers the relationship between futures/forward
prices and water reservoir content given the storability of hydropower. A comparison
of restructured electricity markets is provided in Wolak (2000). He considers a vector
autoregressive model of order 8 for describing hourly prices at Nord Pool. Regression
function with day of the week and month indicators as explanatory variables is used
for modeling the time-varying mean of electricity prices. He estimates a regression
for every hour and has a huge number of regression parameters (> 4600). Each of the
24 determination coefficients R2 is at least 0.99, thus all the regressions have really
high explanatory power. The main goal in Fell (2008) is to determine the dynamic
relationship between the Nord Pool spot prices and EU-ETS (EU emission trading
scheme) CO2 allowance prices (EUAs). To account for interdependencies between
different markets, the relationship between Nordic electricity prices, EUA prices and
the prices of various generation fuels is estimated through a cointegrated vector au-
toregressive (CVAR) approach. Fell (2008) includes in his model also air temperature.

For a structured overview of the existing literature about various time series re-
gression modeling approaches applied to electricity markets throughout the world we
refer to Higgs and Worthington (2008). They discuss both univariate and multivariate
models and analyze strengths and weaknesses of different approaches. This review
article is a good summary of existing electricity price modeling studies.

A natural approach when modeling electricity prices is to model the returns or
more generally, to describe the prices by an autoregressive process of order p. If the
interest is in forecasting the prices far in the future or investigating how different
scenarios affect the prices, it is less appropriate to use former prices for predicting
future prices. Therefore, we have chosen to model the mean electricity price without
using previous prices. The deterministic part is modeled by regression techniques and
the residuals are described by time series models.
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Weekly electricity prices for Sweden (SEK/MWh)
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Figure 1: Electricity prices for Sweden in 2000–2009.

2 Data description
We will model weekly electricity prices for Sweden during 2000–2009 using data from
week 1, 2000 to week 37, 2009 (506 weeks in total). The prices are plotted in Figure
1. The summary statistics for the prices are as follows:

Min 1st Quartile Median Mean 3rd Quartile Max St.dev.
45 212 273 303 382 921 138

As explanatory variables we consider: inflow to the Swedish and Norwegian hy-
dropower reservoirs, water reservoir contents in Sweden and Norway, electricity con-
sumption in Sweden, Swedish net price index, EU allowances prices, electricity import
and export to and from Sweden, and nuclear power production in Sweden. Several
explanatory variables are strongly affected by seasonal variation. One possibility is
to model this by fitting some periodic function, but it has shown to be quite difficult
to get satisfactory descriptions of the seasonal variation in this way. We have chosen
an empirical approach instead: for every week we calculate a historical average value
and use the deviation from that average as our variable. The value of the trans-
formed variable for a particular week shows whether the variable is above or below
its “normal” value. By using the arithmetic mean, the influence from extreme years
may be too high, and by using the median, the average may be imprecise. Thus we
have chosen a compromise and use a truncated mean, where the highest and lowest
values of the variable are not used when calculating the mean. Next we will describe
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how the transformed variables are obtained, because these will be used later in the
modeling.

I. Water variables (Swedenergy). We have weekly data for week 1, 1995–week 37,
2009 for the following variables:

1) inflow to the Swedish and Norwegian hydropower reservoirs (GWh/week),
2) water reservoir content for Sweden and Norway (GWh).

To take into account seasonality in the water variables, we transform these vari-
ables as follows. A truncated mean for every week i, i = 1, . . . , 52, is calculated
by taking away the two smallest and largest values for every week. For weeks
1–37 we have data for 15 years, for weeks 38–52 we have data for 14 years.
For week 53 we take the mean of the values in 1998 and 2004. Thereafter, the
standardized variables st.inflow.sweden, st.inflow.norway, st.res.sweden and
st.res.norway are formed in the following way:

st.water.countryt = water.countryt − trunc.mean(water.country)t ,

t = 1, . . . , 506. In the modeling process we consider for every transformed water
variable separately the positive and negative part of it. For example:

inflow.pos.sweden =
{

st.inflow.sweden, if st.inflow.sweden > 0,
0, else;

inflow.neg.sweden =
{

−st.inflow.sweden, if st.inflow.sweden < 0,
0, else.

As an illustration, we have plotted the original and standardized values of inflow
to the Norwegian water reservoirs in Figure 2.

II. Consumption (Nord Pool Spot AB). We have data for daily consumption
(MWh/day) in Sweden for 1/1/1996–25/11/2009. At first these are summarized
as consumption per week (GWh/week). Since consumption has also seasonality
effect, we compute again standardized weekly values:

st.const = consumptiont − trunc.mean(consumption)t , t = 1, . . . , 506 .

The truncated mean is again calculated without the two smallest and two largest
values for every week. For weeks 1–37 we have data for 14, for weeks 38–52 for
13 years. In the regression model we look separately at the positive and negative
part of the transformed consumption: cons.pos and cons.neg.

III. Net price index (NPI) (at the homepage of Statistics Sweden). NPI measures
the fluctuations of consumer prices with indirect taxes deducted and subsidies
added. It is currently presented on an index reference base of 1980 = 100. The
NPI is published every month. To obtain weekly values, we use interpolation
and calculate an NPI value for each day, thereafter we take the average over
every week.
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Figure 2: The original and transformed water inflow for Norway.

IV. EUA - European Union Allowances (NASDAQ OMX). We have daily spot prices
(EUR/ton) for 25/10/2005–15/12/2009. The prices exist only for weekdays,
therefore we have calculated weekly prices by taking the mean of the weekday
prices and converting these into Swedish krona. We used the exchange rates
from Sveriges Riksbank. Trading with the EUAs was introduced in 2005. The
first, “pilot” phase, ran from 2005–2007. Phase II lasts from 2008 to 2012.
In Figure 3 it can be seen how the EUA prices decreased basically to zero at
the end of Phase I, because there was a surplus of allowances. When Phase II
started, the prices jumped up again.

V. Electricity export and import from and to Sweden in GWh/week (Swedenergy).
In the model we consider net exports,

netexports = export − import .

VI. Nuclear power production in Sweden (Swedenergy), weekly data in GWh/week
for 1995–2009. Because nuclear power production depends also on season, we
use in modeling the variables nuclear.pos and nuclear.neg which are obtained
in the same way as the positive and negative water and consumption variables.
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Figure 3: The prices of European Union Allowances.

In the following table all the explanatory variables used in regression analysis are
given with their measurement units:

res.norway.pos, res.norway.neg GWh
res.sweden.pos, res.sweden.neg GWh
inflow.norway.pos, inflow.norway.neg GWh/week
inflow.sweden.pos, inflow.sweden.neg GWh/week
cons.pos, cons.neg GWh/week
nuclear.pos, nuclear.neg GWh/week
npi
netexports GWh/week
eua SEK/ton

3 Methods for modeling electricity prices
As already mentioned in Introduction, we are interested in studying the behavior
of the electricity price under different scenarios and forecasting the price far in the
future. Thus, we do not want to include the lagged prices in the model. We will use
the following approach: the mean price is modeled by linear regression techniques
and the residuals are described by a time series model. Let xt = (1, x1t, . . . , xkt)′

denote the values of the studied k explanatory variables (where 1 corresponds to the
intercept) at time point t and let X : n × (k + 1) be the matrix with rows given by x′

t,
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t = 1, . . . , n. Let β = (β0, . . . , βk)′ denote the vector of regression coefficients. The
price at time t will be expressed as

yt = f(xt) + zt , t = 1, . . . , n,

where the regression function

f(xt) = β0 + β1x1t + . . . + βkxkt = β′xt

describes the mean electricity price and zt is the residual.

3.1 Modeling f(xt)
The ordinary least squares method was used for estimating the regression coefficients
β0, β1, . . . , βk. To take into account that the residuals zt are heteroscedastic and seri-
ally correlated, we used the Newey-West (1987) heteroscedasticity and autocorrelation
consistent (HAC) standard error estimates for β̂i, i = 0, . . . , k. The standard error
estimate ŝeHAC (β̂i) is given by the square root of the respective diagonal element of

ĈovHAC (β̂) = (X′X)−1ŜHAC (X′X)−1 , (1)

where

ŜHAC =
n∑

t=1
ẑ2

t xtx′
t +

q∑
l=1

wl

n∑
t=l+1

(xtẑtẑt−lx′
t−l + xt−lẑt−lẑtx′

t) .

Here wl = 1 − l/(q + 1) is the Bartlett weight function, ẑt is the sample residual, and
q is a truncation parameter which represents the number of autocorrelations used to
approximate the dynamics for zt. Observe that q must grow with the sample size in
order for the estimate to be consistent. The Newey-West standard error estimates
were used when testing the significance of the regression coefficients with t-statistics.
By taking the serial correlation into account the standard errors of the coefficients
increase, which may reduce the number of variables that are significant.

We started modeling with all the explanatory variables given in the table on p.6
in the model. We chose deliberately to consider the positive and negative parts of the
standardized variables as separate explanatory variables in the model. This enables
to model a possible different effect of the positive and negative part of a variable
on the electricity price. There is for example no reason to assume that positive and
negative values of the water reservoir level affect the electricity price in the same way.
We used stepwise modeling and removed insignificant explanatory variables from the
model one by one. The main criteria in the model building process for choosing a
suitable regression model were the significance of the explanatory variables and the
signs of the estimated coefficients β̂i, i = 1, . . . , k.

One has to be careful with the water variables, because they depend on the amount
of precipitation in two neighboring countries. The correlation coefficients for these
pairs are as follows:

r(st.inflow.norway, st.inflow.sweden) = 0.62 ,
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Figure 4: Relationship between the negative reservoir values in Norway and Swedish
electricity prices.

r(st.res.norway, st.res.sweden) = 0.84 .

The water variables for Sweden were removed in the modeling process, because they
turned out to be insignificant. The water variables for Norway appear to describe
the variability in Swedish area prices better than the respective variables for Sweden.
Since there is a quadratic relationship between the electricity prices and the nega-
tive reservoir content levels, see Figure 4, we decided to include the quadratic term
res.norway.neg2 in the model. The selected regression function is:

elprice ∼ npi + res.norway.pos + res.norway.neg + res.norway.neg2+

inflow.norway.pos + netexports + eua . (2)
The estimated regression coefficients of the variables in the model above are given in
Subsection 4.1.

3.2 Modeling zt

There are three steps in time series model building: identification, estimation and
diagnostic checking. In our case the model can be easily identified by examining
the sample autocorrelation and partial autocorrelation functions (ACF and PACF),
because these follow the theoretical ACF and PACF of autoregressive (AR) models.
The autoregressive model of order p, or the AR(p) model, is given by

zt = ϕ1zt−1 + . . . + ϕpzt−p + εt ,
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Regression residuals
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Figure 5: Regression residuals zt.

where εt are called random shocks or innovations. If a stationary time series follows
an AR(p) model, then the ACF is dominated by exponential decay, while the PACF
truncates at lag p, i.e. the partial autocorrelation coefficients of order higher than p
are equal to zero.

To test for serial correlation in εt, we used the Durbin-Watson statistic:

DW =
∑n

t=2(ε̂t − ε̂t−1)2∑n
t=1 ε̂2

t

.

The Durbin-Watson statistic was also calculated for the estimated regression residuals
ẑt. It holds that DW ≈ 2(1 − ρ̂), where ρ̂ is the estimated correlation between ε̂t and
ε̂t−1. Therefore, the values of DW around two indicate no serial correlation in the
innovations.

To check whether the random shocks from an estimated AR(p) model behave as
a white noise process, we used the Ljung-Box modified Q-statistic defined as:

Q(m) = n(n + 2)
m∑

j=1

ρ̂2
j

n − j
,

where ρ̂j is the j-th order sample autocorrelation coefficient and m is the number
of lags being tested. In our case, ρ̂j =

∑n
t=j+1 ε̂tε̂t−j/

∑n
t=1 ε̂2

t . Under the null
hypothesis that εt follows a white noise process, Q(m) is asymptotically distributed
as X 2(m−p). If Q(m) exceeds the critical value of X 2(m−p), then at least one value
of ρ̂j , j = 1, . . . , m, is different from zero at the specified significance level.

9



-100 0 100 200 300 400

0
20

40
60

80
10

0
12

0

periodI

-100 0 100 200
0

10
20

30
40

50
60

periodII

Figure 6: Regression residual distributions for 2000–2005 and 2006–2009.

4 Empirical contributions
4.1 Estimated regression model
The summary statistics of the selected regression model (2) are presented below:

Estimate s.e. t-value p-value
Intercept −1384.1537 170.3112 −8.1272 0.0000
npi 7.0283 0.7303 9.6238 0.0000
res.norway.pos −0.0070 0.0017 −4.2094 0.0000
res.norway.neg −0.0180 0.0049 −3.7000 0.0002
res.norway.neg2 1.70 · 10−6 3.93 · 10−7 4.3164 0.0000
inflow.norway.pos −0.0176 0.0053 −3.3394 0.0009
netexports −0.1072 0.0209 −5.1332 0.0000
eua 0.5692 0.0841 6.7673 0.0000

The model has a high determination coefficient: R2 = 0.82. The residual standard
error is 58.67 and the residuals are serially correlated: DW = 0.3964. The negative
coefficient of res.norway.pos shows that when the water reservoir content level in
Norway is above its mean value, the electricity price will decrease. The variable
netexports has also negative coefficient meaning that when the electricity import to
Sweden is higher than export from Sweden, the price will increase.
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4.2 Estimated time series models
The residuals zt from the regression analysis are serially correlated, DW = 0.3964.
It can be seen in Figure 5 that the time series of the estimated regression residuals
appears to have a somewhat different behaviour from around the beginning of 2006,
e.g. the standard deviation seems to be larger for the last years. This could be
explained by the EUA prices entering the regression model at the end of 2005. Figure
6 demonstrates that the residuals have different distributions for 2000–2005 and 2006–
2009. The standard deviation of the regression residuals for the first period is 53, while
it is 64 for the second period. For these reasons, we have performed separate analyses
of zt for the two periods.

Period I: 2000–2005. The sample ACF and PACF in Figure 7 indicate that
an AR(3) model is suitable for describing the regression residuals for the first period,
because the ACF exhibits a decaying pattern similar to an AR model and the PACF
is truncated at p = 3, the partial autocorrelations of higher order are not significantly
different from zero. A summary of the fitted AR(3) model is given below:

Estimate s.e. t-value
ϕ̂1 0.7811 0.05475 14.270
ϕ̂2 −0.2758 0.06913 −3.989
ϕ̂3 0.3172 0.05475 5.792

The Durbin-Watson statistic for the innovation process for period I takes the value
1.93, which indicates no serial correlation in the random shocks. In Figure 8, the
sample ACF and PACF for the innovations are plotted together with their 95% con-
fidence intervals about zero. We can see that none of the estimated autocorrelations
and partial autocorrelations are significantly different from zero, indicating a white
noise process. The p-values for the Ljung-Box statistic (see Figure 8) are all larger
than 0.1, thus the null hypothesis that the innovation process for the first period is a
white noise process can not be rejected.

Period II: 2006–2009. Again, since the sample ACF of the regression residuals
in Figure 9 follows a decaying pattern characteristic to an AR process and the sample
PACF is cut at lag p = 1, an AR(1) model seems to be suitable for describing the
regression residuals for the second period. The estimated coefficient ϕ̂1, its standard
error and the t-statistic value are as follows:

Estimate s.e. t-value
ϕ̂1 0.8662 0.03516 24.64

The Durbin-Watson statistic value 2.04 indicates no serial correlation in the innova-
tions. The innovations diagnostics in Figure 10 confirm that the estimated AR(1)
model is a suitable time series model for period II: all the sample autocorrelations
and partial autocorrelations lie within the 95% confidence limits and the p-values of
the Ljung-Box Q-statistic for the lags 2, . . . , 15 exceed 0.15. Therefore, the null hy-
pothesis about the innovations following a white noise process can not be rejected.
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Figure 7: ACF and PACF of the regression residuals for 2000–2005.
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Figure 9: ACF and PACF of the regression residuals for 2006–2009.
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4.3 Scenarios
The estimated regression function f̂(xt) can be used to estimate the effect of the
explanatory variables in the model to the mean electricity price over a number of
weeks. Since

E(yt|xt) = f(xt) + Ezt , where Ezt = 0 ,

f̂(xt) gives an estimate of the expected electricity price for given xt. Suppose we
want to know the mean electricity price over l weeks when the awaited values for the
explanatory variables are x1, . . . , xl for these weeks. Then

1
l

l∑
i=1

Ê(yi|xi) = 1
l

l∑
i=1

f̂(xi) = β̂0 + β̂1x̄1 + . . . + β̂kx̄k = β̂
′
x̄ = f̂(x̄)

gives an estimate of the mean electricity price for these l weeks. Here x̄j , j = 1, . . . , k,
is the mean of the variable xj over the l weeks. The estimate of the standard deviation
of f̂ is given by

ŝtd(f̂(x̄)) = [x̄′ĈovHAC (β̂)x̄]1/2 ,

where ĈovHAC (β̂) is the Newey-West estimate given in (1).
In the table on p.14 we consider nine different scenarios, i.e. nine conceivable

combinations for the mean values of the explanatory variables. The number of weeks
does not affect the estimated mean electricity price or its standard deviation directly.
But the number of weeks and the period of the year has to be taken into account
when we fix a mean value of an explanatory variable over these weeks — this value
has to be reasonable.

Changing the value of only one variable at a time enables to estimate the effect of
that particular variable to the mean electricity price. Consider for example scenarios
1 and 4 in the table. When the mean values of the explanatory variables are given
by scenario 1 and we then change the value of netexports to −400, i.e. we obtain
scenario 4 where the mean electricity import exceeds the export by 400 GWh/week
meaning lack of electricity in Sweden, then the mean electricity price increases by 43
SEK/MWh (4.3 öre/kWh).

As a second example, compare scenario 1 corresponding to the “standard pe-
riod” according to our model with scenario 6. Scenario 6 presents a period with
water scarcity when the water reservoirs content level in Norway is much lower than
normally. Such a situation is for example usual for years with small amount of precip-
itation. We can see that res.norway.neg = 13000 increases the mean electricity price
by 5.2 öre. If we in addition to that assume that it is necessary to import electricity
(scenario 7), the price will increase by 4.3 öre more.

On the contrary, when it rains and snows a lot so that the inflow to water reservoirs
and the reservoir content level are above their mean values, then the mean electricity
price falls, see scenarios 8 and 9.

From the scenarios we can also analyze the effect of an increase of the EUA price.
An increase from 150 SEK to 300 SEK increases the electricity price by 8.6 öre/kWh.
It is interesting to compare the results from our model to the estimates in Hill and

15



Kriström (2005). According to their estimates the electricity price will increase by
10 öre if the EUA price increases from 10 to 30 Euro. If we use our model with an
exchange rate of 9.5 SEK/Euro, we also obtain an increase of 10 öre.

5 Discussion
Modeling electricity prices is a complicated task since electricity prices depend on
many factors that form an intricate system with many interrelations. The model
developed in this work is satisfactory because it has a high determination coefficient
and the residuals for the last period can be described by an AR(1) process. But there
is room for improvement if additional exogeneous variables, e.g. coal, natural gas
and oil prices, are considered. Next, we will discuss some difficulties when modeling
Nordic electricity prices.

The Nordic electricity market depends highly on weather: the supply is dependent
on the amount of precipitation and the demand on temperature. Due to excessive
heating, Sweden has for example the peak demand in winter. Besides, unexpected
weather conditions such as extreme cold can cause sudden and huge price jumps. It is
not obvious how or in which form to include air temperature in modeling. Therefore,
we tried to catch the seasonal fluctuations in demand by the consumption variable,
but this variable turned out to be insignificant. It is also interesting to point out
the relationship between the electricity prices and water reservoir levels. On the
one hand, electricity is a non-storable commodity, on the other hand, water and
therefore hydropower is storable from a producer’s perspective (Deng, 2006). Thus,
“if hydroelectricity is generated strategically, reservoir levels will also be a function
of electricity prices” (Fell, 2008).

As can be seen also from our model, the CO2 emission prices have an influential
effect on electricity prices. But it is not easy to measure and model this effect, because
it is not obvious how the response of electricity prices to changes in EUA prices is
affected by the mixture of Nordic electricity generation techniques. The system price
is determined by the marginal generator fuel, which can be coal, natural gas or oil
for the Nordic electricity market, since it includes a portion of fossil fuel energy.
But coal, gas and oil have different CO2 emission intensities. To estimate how EUA
price changes affect electricity prices depending on the price-setting generator requires
therefore information about the marginal generator. For a more detailed discussion,
see Fell (2008).

For describing future electricity prices, it is crucial to explore interdependencies
between electricity, EUA, carbon, natural gas and oil prices, because prices in one
market impact prices in other markets. Thus, a multivariate approach is awaited to
yield further improvements of the model.
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