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Abstract
Assume that a valuation survey is conducted for estimating the ben-
efits of a policy change. In order to estimate the willingness to pay
(WTP) for the policy change, a classic and interval open-ended ques-
tion is used. This question permits respondents to choose between two
types of answer, either an exact WTP amount or a self-selected inter-
val. Accidently, a rather large proportion of the respondents give exact
WTP values as well as intervals. In this set up, we derive a nonpara-
metric maximum likelihood estimator of the distribution of WTP. Monte
Carlo simulations are performed to study the behavior of the proposed
estimator.

Keywords: Classic and interval open-ended question, contingent valuation,
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1 Introduction

Contingent valuation is a survey-based method for the valuation of non-market
goods, such as biodiversity, air quality improvements or environmental preser-
vation. Typically the survey asks people what they would be willing to pay
for a hypothetical good. There are different types of questions that can be
put forth in order to characterize willingness to pay (WTP). In Håkansson
(2008), a new approach to quantitative information elicitation in surveys is
introduced. More precisely, she develops a classic and interval open-ended
elicitation format that permits respondents to choose between two types of
answer, either an exact amount or a self-selected interval, as illustrated in the
following example from her article:

Example 1.
Question: Try to state what you are willing to pay, either as an
interval between two amounts or as an exact amount.
Answer: (fill in one of the options below)
Option 1:
I am willing to pay between .......... and .......... this year as a lump
sum.
Option 2:
I am willing to pay .......... this year as a lump sum.

In Parkkila (2009), a valuation survey is described that was conducted for
estimating the benefits of a policy change in Baltic salmon fisheries regulation.
The population of interest were anglers in the Torne river, who will benefit
from the policy change. In order to estimate the angler’s WTP for the new
regulation programme, the respondents were asked to answer a question of
the same format as in Example 1. Accidently, a rather large proportion of the
respondents gave exact WTP values as well as intervals. Thus, the observed
data are of the following form: For n1 respondents, only the exact WTP values
are observed, for n2 respondents, both WTP values and intervals are observed,
and for the remaining n3 respondents, the WTP value of interest is observed
only to belong to an interval instead of being exactly known. We denote
exact WTP values by Xj and intervals by Ij = (Lj , Uj ]. After re-ordering the
data as necessary, we can assume without loss of generality that we have the
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following observed data:

{X1, ..., Xn1 , (Xn1+1, In1+1), ..., (Xn1+n2 , In1+n2), In1+n2+1, ..., In},

where n = n1 +n2 +n3. We assume that the {Xi} are independent and identi-
cally distributed random variables with unknown distribution F , and that the
{(Lj , Uj)} are independent and identically distributed random vectors. Based
on the observations from all n respondents, the problem is to estimate the
distribution function F of the Xj ’s.

In survival analysis, a value Xj is often said to be interval-censored
or middle-censored if the only information we have about Xj is that Xj

lies in the interval Ij ; see, e.g., Peto (1973) and Jammalamadaka & Man-
galam (2003). However, standard methods for analyzing interval-censored
and middle-censored data assume, implicitly or explicitly, that the censoring
intervals {Ij} are independent of {Xj}. In our case, this is not a reasonable
assumption.

Recall that a respondent may choose not to state the exact location of the
WTP value, but instead choose to place it within an interval. We will refer
to this as self-censoring, rather than interval-censoring or middle-censoring,
to stress that it is the respondent himself/herself who selects the interval
(containing the exact WTP value). (Thus, in this context, self-censoring means
something quite different than the act of censoring one’s own work out of
fear or deference to the sensibilities of others.) If n1 + n2 > 0 and n3 > 0,
then the observed data will be referred to as partly self-censored data, and if
n1 + n2 = 0 and n3 > 0, as self-censored data. In Belyaev & Kriström (2010),
nonparametric likelihood estimation for self-censored WTP data is studied,
and in the current article we will consider partly self-censored data (the case
when n1 ≥ 0, n2 > 0, and n3 > 0).

If n1 ≥ 0, n2 > 0, and n3 > 0, then for some respondents we observe
both WTP values and intervals. Here a natural question arises: do we gain
anything at all by knowing the interval that contains the exact WTP value
if we already know the value in question? In the current paper we will argue
that by using this extra information we can construct a valid estimator of the
distribution of the WTP values.

In Section 2, we provide a nonparametric maximum likelihood estimator
of F . Simulation results are presented in Section 3. Finally we conclude the
paper in Section 4.
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2 A maximum likelihood estimator of the distribu-
tion of WTP

Henceforth we assume that the vectors {(Li, Ri)} defining the censoring inter-
vals {Ij} follow a discrete bivariate distribution with finitely many support
points, cf. Huang (1999) and Belyaev & Kriström (2010). This is not un-
reasonable, because the empirical self-censored data considered by Belyaev
& Kriström suggest that respondents tend to state rounded intervals from a
finite set.

If we observe a point value X = xj (but no interval), then the contribution
to the likelihood is

F (xj) − F (xj−).

If we observe both a point value X = xj and an interval I = ij , where
ij = (lj , rj ], then the contribution to the likelihood is the right-hand side of

P (I = ij , X = xj) = [F (xj) − F (xj−)]P (I = ij |X = xj)
∝ [F (xj) − F (xj−)].

For the case when we observe an interval (but no point), we define a partition
of the positive real line. That is, we determine a set of values, 0 = s0 < s1 <

... < sm < sm+1 = +∞, and define vk = (sk−1, sk] for k = 1, ..., m + 1. By the
law of total probability,

P (I = ij) =
∑

k

αjkP (I = ij |X ∈ vk)P (X ∈ vk)

=
∑

k

αjkwjk[F (sk) − F (sk−1)],

where wjk = P (I = ij |X ∈ vk), and αjk = 1 if vk ⊆ ij and 0 otherwise. Thus,
if we observe an interval I = ij (but no point), then the contribution to the
likelihood is ∑

k

wjkαjk[F (sk) − F (sk−1)]

(cf. Belyaev & Kriström, 2010). Based on the above, the likelihood function
of the observed data is proportional to

L(F, w) =
n1+n2∏

j=1
[F (xj)−F (xj−)]

n∏
j=n1+n2+1

[∑
k

wjkαjk[F (sk)−F (sk−1)]
]
,
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where w = {wjk} and n = n1 + n2 + n3. Note that the expres-
sion of the likelihood depends on the unknown conditional probabilities
wjk = P (I = ij |X ∈ vk). However, by plugging in estimates ŵ = {ŵjk}, e.g.
the estimates suggested below, we obtain a function L(F, ŵ) which may be
maximized to obtain an estimate of the distribution function F .

Remark 1. If we determine the set of values, 0 = s0 < s1 < ... < sm <

sm+1 = +∞, such that each Lj and Rj are contained in the set, and if for
each j = n1 + n2 + 1, ..., n there exists wj such that wj = wjk for all k such
that vk ⊆ ij , then∑

k

wjkαjk[F (sk) − F (sk−1)] ∝
∑

k

αjk[F (sk) − F (sk−1)]

= F (Rj) − F (Lj)

and the likelihood of the observed data is proportional to

L(F ) =
n1+n2∏

j=1
[F (xj)−F (xj−)]

n∏
j=n1+n2+1

[F (Rj) − F (Lj)]. (1)

This is essentially the same likelihood as used by Peto (1973) and Jammala-
madaka & Mangalam (2003), and a special case of the likelihood defined by
Turnbull (1976). The difference lies in the choice of convention for defining
the censoring intervals. Peto and Turnbull assume that the intervals are
closed rather than half-open, while Jammalamadaka & Mangalam use open
intervals. As mentioned by Lindsey & Ryan (1998), good arguments can
be made for and against almost any convention for defining the censoring
intervals, and in practice, the choice will have little impact and any reasonable
convention can be adopted. Further, note that the assumption that wj = wjk,
for all k such that vk ⊆ ij , essentially assumes that the point value Xj and
the interval Ij are independent. This assumption, however, is not reasonable
if it is the respondent who chooses the interval.

Remark 2. If n1 + n2 = 0, n3 > 0 , and if we determine the set of values,
0 = s0 < s1 < ... < sm < sm+1 = +∞, such that each Lj and Rj are
contained in the set, then L(F, w) reduces to the likelihood considered in
Belyaev & Kriström (2010). Under this setting, Belyaev & Kriström propose
estimators of the conditional probabilities {wjk}, and under the assumption
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that the conditional probabilities {wjk} are known (or can be consistently
estimated), they show that the obtained nonparametric maximum likelihood
estimator of the distribution F is consistent.

In order to estimate w = {wjk}, we assume that the distribution of the
relative position of the point X in the interval I = i = (l, r] does not depend
on the interval i. That is,

P

(
X − l

r − l
≤ x

∣∣∣I = i

)
= H(x) for all x. (2)

By Bayes’ theorem we have

wjk = P (I = ij |X ∈ vk) = pkjpj∑
l αlkpklpl

,

where

pkj = P (X ∈ vk|I = ij),
pj = P (I = ij),

αjk = 1 if vk ⊆ ij , and 0 otherwise.

We estimate pj = P (I = ij) by the proportion p̂j of observed intervals that
equals ij .

If respondent j has given both a point xj and an interval ij = (lj , rj ], then
we compute xj ’s relative position in the interval, i.e.

x′
j = xj − lj

rj − lj
, j = n1 + 1, ..., n1 + n2,

and H is estimated by Ĥ, the empirical distribution of {x′
j}n1+n2

j=n1+1. For each
vk = (sk−1, sk] ⊆ ij , j = n1 + 1, ..., n, compute the relative positions of the
endpoints sk−1 and sk in the interval ij = (lj , rj ], i.e.

s′
j,k−1 = sk−1 − lj

rj − lj
and s′

j,k = sk − lj
rj − lj

.

The conditional probability pkj = P (X ∈ vk|I = ij) may now be estimated
by

p̂kj = Ĥn2(s′
j,k) − Ĥn2(s′

j,k−1),
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and by Bayes’ theorem we obtain the estimator of wjk as

ŵjk = p̂kj p̂j∑
l αlkp̂klp̂l

.

Thus, under assumption (2), an estimator, F̂ , of the distribution F of X is
found by maximizing

L(F, ŵ) =
n1+n2∏

j=1
[F (Xj)−F (Xj−)]

n∏
j=n1+n2+1

[∑
k

ŵjkαjk[F (sk)−F (sk−1)]
]
,

with respect to F .
It should be noted that assumption (2) is rather restrictive. If necessary,

the assumption can be relaxed to

P

(
X − l

r − l
≤ x

∣∣∣I = i

)
= H(x|θ) for all x, (3)

where θ = θ(l, r) is a real-valued (or even vector-valued) function of the interval
limits l and r. Let θj = θ(lj , rj), j = n1 + 1, ..., n1 + n2. The conditional
distribution function H(x|θ) may be estimated by

Ĥ(x|θ) =
n−1

2
∑n1+n2

j=n1+1 I{x′
j≤x}Wh(θj , θ)

µ̂(θ)
,

where

µ̂(θ) = 1
n2

n1+n2∑
j=n1+1

Wh(θj , θ)

is a kernel estimator of the marginal density µ(θ) of θ,

Wh(θj , θ) = h−1K

(
θj − θ

h

)
, (4)

and K(·) is a univariate kernel function (Li & Racine, 2007). Under assump-
tion (3), the estimator of wjk is obtained as

w̃jk = p̃kj p̂j∑
l αlkp̃klp̂l

where
p̃kj = Ĥ(s′

j,k|θj) − Ĥ(s′
j,k−1|θj).
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Thus, under assumption (3), an estimator, F̃ , of the distribution F of X is
found by maximizing

L(F, w̃) =
n1+n2∏

j=1
[F (Xj)−F (Xj−)]

n∏
j=n1+n2+1

[∑
k

w̃jkαjk[F (sk)−F (sk−1)]
]
,

with respect to F .

3 Monte Carlo simulations

Four different simulations have been conducted. In each one of them, we
determined the set of values, 0 = s0 < s1 < ... < sm < sm+1 = +∞, such
that each Lj and Rj are contained in the set. A motivation for this choice is
that this partition of the positive real line needs to be defined in any case, for
finding the maximizer of the likelihood (cf. Peto, 1973, and Turnbull, 1976).
Furthermore, our results show that this choice gives adequate estimates of
the distribution F , and Belyaev & Kriström (2010) use the same partition in
the definition of their nonparametric maximum likelihood estimator for self-
censored data.

In each simulation, L1, ..., Ln are independent and exponentially dis-
tributed random variables, with mean 100, rounded downwards to the near-
est multiple of 10. The upper boundaries of the intervals are defined as
Rj = Lj + Yj , j = 1, ..., n, where Y1, ..., Yn are independent and exponen-
tially distributed random variables, with mean 40, rounded upwards to the
nearest multiple of 10. Thus, each interval (Lj , Rj ] is at least 10 units wide.
The exact values are generated as Xj = Lj +YjZj , j = 1, ..., n, where Z1, ..., Zn

are independent and beta distributed random variables, with parameters αj

and βj , j = 1, ..., n. The number of respondents is n = 200. All the respon-
dents give an interval (Lj , Rj ], and 20 % of them give an exact value Xj as
well.

In simulation 1, we used α = 5 and β = 1, i.e. the beta density function
is strictly convex and increasing on its support. This means that the respon-
dents tend to have the exact values Xj placed near the upper boundaries of
the intervals Ij . In simulation 2, α = 1 and β = 5, which means that the
respondents tend to have the exact values placed near the lower boundaries of
the intervals. In simulation 3, we used αj = 5 + 10(Rj − Lj)/Rj and β = 1.
Thus, this simulation is similar to simulation 1, but in this case the tendency
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Figure 1: Estimates of F from Simulation 1: blue = F̂ , red = F ∗ and black = Fn.
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Figure 2: Estimates of F from Simulation 2: blue = F̂ , red = F ∗ and black = Fn.
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Figure 3: Estimates of F from Simulation 3: blue = F̃ , red = F ∗ and black = Fn.
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Figure 4: Estimates of F from Simulation 4: blue = F̃ , red = F ∗ and black = Fn.
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to have exact values placed near the upper boundaries of the intervals is more
pronounced among respondents with large values of (Rj − Lj)/Rj . The last
simulation have α = 1 and βj = 5+10(Rj −Lj)/Rj and is similar to simulation
3, but the tendency to have exact values placed near the lower boundaries
of the intervals is more pronounced among respondents with large values of
(Rj − Lj)/Rj .

In simulations 1 and 2, F is estimated by computing a maximizer of
L(F, ŵ), and in simulations 3 and 4, the estimates were computed by maxi-
mizing L(F, w̃). For comparison, we computed the empirical cumulative dis-
tribution function (ECDF) Fn of X1, ..., Xn and the maximizer F ∗ of (1) in
each simulation. That is, F ∗ is Jammalamadaka & Mangalam’s (2003) non-
parametric maximum likelihood estimator for middle-censored data.

In the last two simulations we used θj = (Rj −Lj)/Rj . The support of this
random variable is not the whole real line but the interval [0, 1]. To overcome
the boundary (bias) problem in the kernel estimation, the following simple
boundary corrected kernel (Li & Racine, 2007, p. 31)

Wh(θj , θ) =


h−1K

(
θj−θ

h

)
/

∫ ∞
−θ/h K(x)dx if θ ∈ [0, h)

h−1K
(

θj−θ
h

)
if θ ∈ [h, 1 − h]

h−1K
(

θj−θ
h

)
/

∫ (1−θ)/h
−∞ K(x)dx if θ ∈ (1 − h, 1],

was used instead of (4), where K(·) is the standard normal density function.
The bandwidth h was determined by least-squares cross-validation.

The results from the four simulations are shown in Figures 1-4. In Fig-
ures 1 and 3, the results from simulations 1 and 3 are presented. In both
these simulations the respondents tended to have the exact values placed near
the upper boundaries of the intervals. We see that the estimator F ∗ fails to
recognize this behavior in the data. That is, F ∗ lies above the correspond-
ing unbiased ECDFs in Figures 1 and 3, and this implies that F ∗ will tend
to overestimate the distribution function F . The estimator F̂ in simulation
1 and the estimator F̃ in simulation 3, on the other hand, are close to the
corresponding ECDFs, and appears to give valid estimates of the distribution
function F . The implications of Figures 2 and 4 are that F ∗ will tend to
underestimate F if the respondents tend to have the exact values placed near
the lower boundaries of the intervals. The estimators F̂ and F̃ do not seem
to have this problem.
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4 Conclusions

In this paper we have considered estimation for partly self-censored WTP data,
and we have developed nonparametric maximum likelihood estimators F̂ and
F̃ of the distribution, F , of WTP. The simulations performed in this paper
imply that if partly self-censored WTP data are handled by standard estima-
tion methods for (partly) interval-censored or middle-censored data, then the
resulting estimator of F will tend to be biased. The proposed estimators, F̂

and F̃ , do not seem to share this problem.
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