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Abstract
Information on visitation frequencies in recreational fishing is impor-
tant when dealing with fishing tourism in order to make prognoses for
the future upon changes in the management of the aquatic environment
(flow regime or habitat restoration), fishing regulations, or to estimate
the total harvest of fish. Therefore interviews have been performed in a
number of streams and sections of streams, throughout the last twenty
years in the Jämtland-Härjedalen region in Sweden. In this work the
probability distribution of total fishing hours a day (possibly on differ-
ent periods) is considered. We found that both Gamma and Weibull
distributions can be considered as approximate distributions that gen-
erate the data. Gamma distribution fits very well for summer season
while Weibull distribution is more appropriate for the other periods. In
general, the gamma model is easier to interpret and better fits the mode
of the distribution, and therefore, is preferred. Having parameters esti-
mated, we are able to calculate probabilities of different fishing times.
It is also suggested to use two periods: mid-summer – the end of August
and other dates. The modelling at section level seems to be successful.
Both the Gamma and Weibull distributions fits well the data for all pe-
riods, providing that the number of observations are not less than 20.
The mean fishing hours, however, varies from section to section, even
within the same watercourse.

Keywords: Fishing time, density estimation, goodness-of-fit test, randomi-
sation.
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1 Introduction
Information on visitation frequencies in recreational fishing is important when
dealing with fishing tourism in order to make prognoses for the future upon
changes in the management of the aquatic environment (flow regime or habitat
restoration), fishing regulations, or to estimate the total harvest of fish. The
number of fishing licenses sold does generally not have the resolution needed
for analyses of management regulation effects because there might be alterna-
tive stream sections with different fishing rules available for the same licence.
Therefore interviews have been performed in a number of streams and sec-
tions of streams, throughout the last twenty years in the Jämtland-Härjedalen
region in Sweden. The interviews have generally been performed once, twice
or three times a week throughout the fishing (summer) season. The two most
important questions asked during the field interviews with relevance for this
report are one question that gives the time spent fishing so far “today” and
the other about the expected total time spent fishing “today” (start-stop).
Each interview event covers the entire stream sections, which means that the
anglers being active will be asked these questions. There are also additional
questions, but these are left out here since the focus in this report is on the
expected total time per angler. When aggregating these data to seasonal mea-
sures, it has not been clear what is the best method to use, and how to best
estimate the uncertainty in the measures.

2 Weather independent interview events
The statistics on the number of anglers and their fishing time was gathered at
one, two or three days per week throughout the fishing seasons. One concern
in the analysis has been whether the interviews are representative in terms
of weather. To investigate if the interviewers preferred non-rainy days, data
on precipitation and interview events were compared. If there was preference
for non-rainy days, the results from the interviews might be biased, such that
also fewer anglers might be active during the rainy days. Lack of observations
from such days would therefore lead to overestimation of the total number of
anglers and their fishing time per season. For weather independent interviews
to be the case, the cumulative density functions of precipitation and interviews
in relation to the amount of precipitation per day should coincide. The check
was performed as follows. The empirical cumulative density functions (ecdf)
were compiled for number of days in relation to the precipitation those days.
Similarly an ecdf was compiled for the number of interview days in relation
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Figure 2.1: Nedre Ammerån, 1995-1999 (excluding 1998)
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Figure 2.2: Råndan, 1997-2003 (excluding 2001)

to the precipitation those days. This comparison was made for two streams:
Nedre Ammerån (Figure ??) and Råndan (Figure ??), including all sections
for each stream and excluding years with few interviews and when only a
subset of the sections were visited by the interviewers. For Nedre Ammerån
the two ecdf’s were almost identical indicating that the interview events were
applied independent on the weather (amount of rain per day). In contrast,
there was a tendency for interviews during less rainy days in Råndan than
would be expected from the frequency of rainy days.
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Table 3.1: Distribution of observations over month and year

Month June July August September Total
Obs. 197 387 264 88 936
Year 94 95 96 97 98 99 00 02 03 04 05 06 07 Total
Obs. 41 68 43 147 62 137 65 53 77 65 80 51 47 936

Table 3.2: Distribution of observations over period

Period Definition Obs.
1 Midsummer Day – July 15 278
2 July 16 – August 31 450
3 Weekends outside of Periods 1 & 2 112
4 Weekdays outside of Periods 1 & 2 96

Total 936

3 Data description
The whole data is of size 2611, from year 1994 to 2007 (without observation
in 2001); of which 2595 are in months June to September. Of the 2595, there
are 936 observations on unique days and sections of watercourses. The total
fishing hours, the greater number of “Spent Fishing Time” and “Estimated
Fishing Time” for that day, are summed up for each day by different sections.
Those data are used as the basis for estimation. In addition, data of the
number of anglers every day are also available. The distribution of data over
month and year is presented in Table ??.

Empirical experience suggests that the data may be divided into four pe-
riods, each of which represents the seasonality of fishing activities. The first
two periods contain the majority of fishing time, due to the summer vacation,
where Period 2 shall indicate the peak season. While Period 3 and 4 represent
the slack season (first two third part of June and whole September), there
should still be some difference between weekends and weekdays. We will show
that these four periods have different distribution patterns. The distribution
over period is shown in Table ??.

The primary goal of this work is to estimate the distribution of total fishing
hours for one day by sections (of different watercourses in Jämtland, Sweden),
years, and/or periods. Since the data length is very limited if data are divided
to such detail categories (see Table ??), it is not appropriate to estimate the
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densities. Therefore, we will only consider the distribution of total fishing
hours per day (possibly on different periods or years). Note that since the
average number of anglers per day can be estimated, so can the fishing hours
per angler per day.

4 Density estimation
To investigate the probability distributions of total fishing hours, we use
parametric statistical inference method, which implies in this case to use
Kolmogorov-Smirnov goodness-of-fit test (KS-test) for testing how good the
data fits a certain probability distribution. The corresponding parameters
in the distribution will be estimated by using the maximum likelihood (ML)
method. The nonparametric density estimation will also be applied for illus-
trating the distributional curve (more smooth than the histogram) and for
judgement in comparison of different parametric estimates.

Based on the characteristics of the random variable, “Total fishing hours”,
such as continuity, nonnegativity and type of lifetime, we choose the following
four probability distributions to be fitted for our data:

4.1 The exponential distribution

When a random variable X measures the duration of time until the occurrence
of a given phenomenon, it can be described by the exponential distribution,
whose density is

f(x;β) = 1
β
e−x/β, if x ≥ 0,

where β > 0 is the scale parameter. This scale parameter is a survival pa-
rameter in the sense that if a random variable X is the duration of time that
a given biological or mechanical system manages to survive. The expected
duration of survival of the system is β units of time, and the sample mean X̄
is the ML estimator of the scale parameter.

Moreover, the exponential distribution is the only continuous distribution
with a ”lack of memory” property. That is, if the lifetime of a part follows
the exponential distribution, then the distribution of the time until failure is
the same as the distribution of the time until failure given that the part has
survived to time t:

Pr(X > s+ t|X > s) = Pr(X > t), for s > 0, t > 0.
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4.2 The gamma distribution

If X1, X2, ..., Xα are α independent exponentially distributed random vari-
ables, each of which has a mean of β, then the sum Y =

∑α
i=1Xi has the

gamma distribution with density function

f(y;α, β) = yα−1

βαΓ(α)
e−y/β , if y ≥ 0,

where α > 0 is the shape parameter, β > 0 is the scale parameter, and Γ is the
gamma function. Note that α need not always be an integer. The mean of Y is
µ = αβ. Obviously, the exponential distribution is a special case of the gamma
distribution when α = 1. A gamma distribution starts to resemble a normal
distribution as the shape parameter α tends to infinity. The ML estimators of
α and β are the solutions of the following simultaneous equations:

log(α̂) − ψ(α̂) = log
[

Ȳ

(
∏n

i=1 Yi)1/n

]
,

β̂ = Ȳ

α̂
,

where ψ is the digamma function: ψ(α) = Γ′(α)/Γ(α).
The gamma distribution is frequently a probability model for waiting times;

for instance, in life testing, the waiting time until death is a random variable
that is frequently modeled with a gamma distribution. Applications of the
gamma include life testing, statistical ecology, queuing theory, inventory con-
trol and precipitation processes.

4.3 The Weibull distribution

Important examples of nonnegative random variables occurring in applica-
tions are lifetimes, waiting times, learning times, durations of epidemics, and
travelling times. Nontemporal examples of nonnegative random variables in-
clude material strengths, particle dimensions, radioactive intensities, rainfall
amounts, and costs of industrial accidents. Although exponential or gamma
distributions provide reasonable fits to the frequency distributions of some of
these random variables, in some cases the fit is not as close as is desired, and
in other cases the fit is unsatisfactory. Hence, other classes of distributions
have been introduced to explain the variability of some of these phenomena.
One such family of distributions is Weibull distributions. The experience of
many investigators has shown that the Weibull distributions provide good
probability models for describing “length of life” and other endurance data.
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The Weibull distribution has a density function as follows:

f(x;α, β) = α

β

(
x

β

)(α−1)
e−(x/β)α

, if x ≥ 0,

where α > 0 is the shape parameter and β > 0 is the scale parameter. When
α = 1, the Weibull distribution becomes the exponential distribution with the
same scale parameter.

The ML estimators of α and β are the solutions of the following simulta-
neous equations:

α̂ = n{
(1/β̂)α̂

∑n
i=1

[
X α̂

i log(Xi)
]}

−
∑n

i=1 log(Xi)

β̂ =
[

1
n

n∑
i=1

X α̂
i

]1/α̂

The Weibull distribution is often used in the field of life data analysis due
to its flexibility – it can mimic the behaviour of other statistical distributions
such as the normal and the exponential. If the failure rate decreases over time,
then α < 1. If the failure rate is constant over time, then α = 1. If the failure
rate increases over time, then α > 1.

An understanding of the failure rate may provide insight as to what is
causing the failures:

• A decreasing failure rate would suggest ”infant mortality”. That is, de-
fective items fail early and the failure rate decreases over time as they
fall out of the population.

• A constant failure rate suggests that items are failing from random
events.

• An increasing failure rate suggests ”wear out” - parts are more likely to
fail as time goes on.

4.4 The lognormal distribution

A lognormal distribution is a probability distribution of a random variable
whose logarithm is normally distributed. If Y is a random variable with a
normal distribution, then X = exp(Y ) has a lognormal distribution; likewise,
if X is lognormally distributed, then log(X) is normally distributed.

Weibull distribution, with density

f(x;µ, σ) = 1√
2πσx

exp
{

− 1
2σ2 [log(x) − µ]2

}
, if x ≥ 0,
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where µ and σ > 0 are parameters of the distribution. They are mean and
standard deviation of the distribution of log(X). Thus the ML estimators of
µ and σ2 will be sample mean and sample variance, respectively, applied to
log-transformed data.

A variable might be modelled as log-normal if it can be thought of as the
multiplicative product of many independent random variables each of which is
positive. Because the empirical distribution of many variables are inherently
positive and skewed to the right (e.g., size of organisms, amount of rainfall, size
of income, etc.), the lognormal distribution has been widely applied in several
fields, including economics, business, industry, biology, ecology, atmospheric
science, and geology

The lognormal distributions are important competitors to the exponential,
gamma, or Weibull distributions as models for nonnegative phenomena.

It is worth noting that all these four distributions belong to a more general
distribution class, the generalised Gamma distribution, where three parame-
ters determine determine the distribution family.

5 Goodness-of-fit test

5.1 The whole data set

Assume that all observations are independent and from same distribution
(population). From Figure ??, the candidate densities are fitted and compared
with the histogram and nonparametric density estimate using Gaussian kernel
of all the data, where the parameters in Exponential, Weibull, Gamma and
Lognormal distributions are estimated by the maximum likelihood method.
The estimated parameters and P-values using Kolmogorov-Smirnov goodness-
of-fit test (KS-test) are presented in the legend of Figure ??. Note that there
are only 129 unique values among the 936 observations; the KS-test cannot
give an accurate P-value for data with ties. Thus, the P-values reported are
used only as a relative reference.

5.2 Data by periods

5.2.1 Four periods

To begin with looking at the data from each period separately, the summary
statistics for these four periods is presented in Table ??. It indicates similari-
ties between Period 1 and 2 as well as between Period 3 and 4. Due to some
extremely large observations, the mean and standard deviation are bigger than
the median and IQR.
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Figure 5.1: Histogram and density estimates for whole data

Table 5.1: Summary Statistics for fishing time in four different periods

Period 1 2 3 4
Mean 22.1 20.0 14.3 13.4
Std 21.1 20.9 17.9 16.2

Median 15.0 16.0 8.0 6.8
IQR 20.0 18.0 11.5 12.6

Table 5.2: Distributions selected for different periods with the greatest P-value
and the corresponding parameter estimation

Period 1 2 3 4
Distribution Gamma Gamma Weibull Weibull

P-value 0.05 0.24 0.07 0.05
Parameter(s) (1.40,15.79) (1.49,13.46) (1.03, 14.48) (0.97, 13.17)
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Figure 5.2: The histograms and densities for data from each period

Table ?? shows the distributions with greatest P-values from KS-test for
data from four periods and the estimated parameters for Gamma or Weibull
distributions (from ML estimation). Both Periods 1 and 2 entail gamma dis-
tributions. While Weibull distribution has greatest P-value in Periods 3 and 4,
the closeness of the shape parameter to 1 implies that the exponential distri-
bution is also a good approximation. Figure ?? shows the histograms and the
estimated Gamma or Weibull densities for these four periods. Summarising
the analysis above, it seems that the distributions for Periods 1 and 2 differ
only slightly from each other, seen both from the first two moments and the
distributions estimated from the data. So do Periods 3 and 4.

In addition, the P-values of KS-test for testing the distributional equiv-
alences between Periods 1 and 2, and Periods 3 and 4 are 0.49 and 0.41 re-
spectively. All other two sample KS-tests showed significant distributional
differences. Therefore, it will be worth to merge the data into two periods and
to look further their distributional behaviours.

5.2.2 Two periods

In this subsection we make the two combinations of data over periods: Period
I = Periods 1 + 2, Period II = Periods 3 + 4. Figure ?? shows histograms and
density estimates for these combined periods. Note that the ranges in x-axis
are different. P-values from the KS-test indicate that none of four distributions
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Figure 5.3: Histogram and densities for Period I (upper) and Period II (Lower)

is fitted well.

5.3 Data by year

If we consider the distribution of fishing time each year separately, the results
are much more promising. Table ?? summarises the results from KS-tests with
the P-values and the estimated parameters for each four distributions. It can
be seen that both Gamma and Weibull distributions fit well the data for all
years except 2003 and 2005. Note that year 2005 is also fitted good by these
two distributions if the extreme value would be omitted.

5.4 Data by section

If we look at the data based on each watercourse section, then to our delight,
it is shown in Table ?? that both Gamma and Weibull distributions fits very
well, for all kind of periods. Note that only those sections having more than 20
observations were tested. As examples, Figure ?? shows the fitted models for
data from Section 7 and Section 15 in Period I and Period II, respectively. The
major difference between two parametric models is their performance around
the mode. In general, the gamma distribution fits the peak better than the
Weibull distribution.
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5.5 Ties and Randomisation

As mentioned earlier, due to the problem with ties, the P-values obtained
from the KS-test are not accurate. In this section we consider some issues for
solving the problem.

5.5.1 “‘Thinning”

Firstly, we simply eliminate ties by “thinning” the data. That is, we con-
sider only those 129 unique values in our data. Under this circumstance, we
would be very satisfied with the goodness of fit by either Gamma or Weibull
distribution, as shown in Figure ??.

Next, we will investigate the effect of randomisation. Ties in the observa-
tions will be untied by resampling. That is, we resample the tied data by using
randomisation within the interval of plus-minus half hour, in principle. The
randomisation is conducted according to three different distributions: triangu-
lar, uniform, and mixture of uniform distributions. The number of replicates
is 100 each.
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data

5.5.2 Triangular distribution

Each observed fishing time ti is resampled according to the triangular distri-
bution on the interval [(ti − 0.5) ∨ 0, ti + 0.5] with mode = ti:

Tri(a, b, c) = Tri
(

(ti − 1
2

) ∨ 0, ti + 1
2
, ti

)
.

5.5.3 Uniform distribution

Each observed fishing time ti is resampled according to the uniform distribu-
tion on the interval [(ti − 0.5) ∨ 0, ti + 0.5]:

U

[
(ti − 1

2
) ∨ 0, ti + 1

2

]
.

5.5.4 Mixture of uniform distributions

Each observed fishing time ti is resampled according to the mixture of four
uniform distributions given as follows:

p1U

[
ti − 1

2
, ti − 1

4

]
+p2U

[
ti − 1

4
, ti

]
+p3U

[
ti, ti + 1

4

]
+p4U

[
ti + 1

4
, ti + 1

2

]
,

where (p1, p2, p3, p4) = (1/6, 1/3, 1/3, 1/6). Note that above mixture is ap-
plied when the observed fishing time is an integer, which is the most frequent
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Table 5.3: Distributions selected for different periods with the greatest P-
value, after three methods of randomization. The mean and coefficient of
variation (CV) of the P-values from KS-test over 100 replicates

Gamma Weibull
Triangular Whole Period I Period 1 Period 2 Period II Period 3 Period 4

Mean 0.01 0.08 0.11 0.50 0.01 0.14 0.13
CV 0.33 0.25 0.21 0.13 0.33 0.22 0.28

Uniform
Mean 0.02 0.09 0.13 0.53 0.02 0.15 0.15
CV 0.38 0.24 0.27 0.12 0.37 0.32 0.29

Mixture
Mean 0.01 0.08 0.16 0.49 0.02 0.15 0.11
CV 0.29 0.19 0.11 0.10 0.18 0.14 0.11

occurrence. In other cases, we simplify the distribution as follows:
U

[
ti − 1

4
, ti + 1

4

]
if 4ti = integer;

U

[ [4ti]
4
,
[4ti] + 1

4

]
, otherwise.

where [x] denotes the largest integers ≤ x.
Table ?? presents the selected distributions by the greatest mean P-values

of KS-test after randomisation. The tests for the whole data, data from
four periods (Periods 1–4), as well as data from two combined periods (Pe-
riods I and II) are included. 100 resampled copies are generated and tested
for goodness-of-fit for distributions Exponential, Gamma, Weibull, and Log-
normal, respectively. It shows that Gamma distribution fits best for the first
two periods and and their combination, i.e., the summer season from mid-
summer day to the end of August, and among them, Period 2 (16th of July
to 31th of August) has the highest P-value. For those periods outside this
summer season, i.e., Periods 3 and 4 and their combination Period II, Weibull
distribution fits better. However, the whole data set rejects all candidates
of distributions, as we have seen for the original tied or unique data. This
convinces us that fishing times are distributed differently for different time
periods.

If we compare the three methods of randomisation, the resulting mean P-
values seems similar, and the uniform gives the highest one in most of cases. It
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is more interesting to note that the mixture method has the lowest coefficient
of variation (CV) in all cases.

Considering the distribution of fishing time each year separately, the results
are better than that from the original data. Table ?? presents the mean P-
values from KS-test on each year over 100 replicates of randomisation using
the three methods. Both Gamma and Weibull distributions fit well the data
for all years except 2003. All three methods of randomisation give consistent
results, while the mixture provides the least variation.

Furthermore, regarding the most “stable” behaviour from the KS-test on
the data by section, it is interesting to know how they behave after randomisa-
tion. As one can expect, all the KS-tests based on the randomised data show
that both Gamma and Weibull distributions are good candidates to model
the fishing time at section level. Since it is easier to interpret the parame-
ters in the Gamma distribution with respect to fishing time, and also better
fits the mode of the distribution. we choose to summarise only the testing
results for Gamma distribution and the mixture method of randomisation.
Table ?? shows the average of estimated parameters from the KS-test and the
mean fishing hours µ on each section at different periods, over 100 replicates
of randomisation.

We take two sections as examples for interpretation the fitted models. Re-
call that the Gamma distribution with the shape parameter α and the scale
parameter β can be regarded as a sum of α independent exponentially dis-
tributed random variables, each of which has a mean of β, and the mathemat-
ical expectation µ = αβ.

Consider first section 15 in the watercourse Nedre Ammerån. It has 109
observations in total and the estimated parameters are α = 1.6, β = 7.5. Thus,
the mean fishing time is about 12 hours at this section, where in average 1.6
anglers showed up, having 7.5 fishing hours each. If we look at different
periods, it is found that the mean fishing time is almost twice longer in Period
I (14 hours) than in Period II (7.4 hours), and within Period I, the mean
fishing time is slightly longer in Period 1 (15.7 hours) than in Period 2 (13.3
hours). Consider now section 7 in the watercourse Råndan. The estimated
mean fishing time is about 23.5 hours, where in average 3 anglers showed up,
each having 8 fishing hours. At the seasonal level, the mean fishing time is
longer in Period II (29.6 hours) compared to Period I (21.7 hours). Within
Period I, it has also longer mean fishing time in Period 1 (25.5 hours) compared
to Period 2 (19.6 hours).

We observe also that the mean fishing time is in general much longer for
the sections within the watercourse Hotagsströmmen than those in within the
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watercourse Nedre Ammerån.
Finally, it shows that after randomisation, there are no ties and P-values

are consequently larger than that for the true data. On the other hand, ran-
domisation would not influence the parameter estimation, and the densities
estimated from the true and randomised data are almost same.

6 Discussion
A. Parametric models

From the testing results, it is seen that both Gamma and Weibull distribu-
tions can be considered as approximate distributions that generate the data.
They give close approximation to the data in most of the cases. Gamma dis-
tribution fits very well for summer season while Weibull distribution is more
appropriate for the other periods.

Recall that exponential distribution can be understood as the data generat-
ing mechanism that anglers come and leave randomly. The “memorylessness”
property of exponential can be understood in a same manner. In addition,
exponential occurs when describing the lengths of the inter-arrival times in
a homogeneous Poisson process, where the intensity of the Poisson process
indicates the mean number of anglers arrived.

Therefore it could be reasonable to describe the fishing time that each an-
gler spent per day as a random variable with exponential distribution. Con-
sequently, the total fishing time per day can be well characterised by the
Gamma distribution, because the sum of independent exponential variables is
Gamma-distributed.

In general, the gamma model is easier to interpret and better fits
the mode of the distribution, and therefore, is preferred. Having param-
eters estimated, we are able to calculate probabilities of different fishing times.

B. Periods
The distributions for Periods 1 and 2 differ only slightly from each other,

seen both from the first two moments and the distributions estimated from
the data. So do Periods 3 and 4. Therefore, it may be suggested to use two
periods, i.e. Period I: from mid-summer to the end of August and Period II:
other dates.

C. Fishing hours relate to the dates
It is not easy to relate the amount of fishing time to the dates. In that

case, the data have to be divided yearly such that the data size is rather

15



short for every year. There is no clear pattern for different years. In addition,
using “date” (or similar time variable) as explanatory variable leads to clear
conclusion. The explanatory variable is usually not significant (at level 5%).

D. Sections
The modelling at section level seems to be successful. Both the Gamma

and Weibull distributions fits well the data for all periods, providing that the
number of observations are not less than 20. The mean fishing hours varies
from section to section, even within the same watercourse.

E. Others
Although there are more than 4000 total observations, only 936 are on

unique days and watercourse sections. The data length is still very limited
if they are divided into different years (13 years) or sections (22 sections).
This raises problem of density estimation. The temperature, precipitation,
and water temperature data have been analysed as explanatory variables to
fishing time. Note that those series cover different time period of fishing
data and fishing data are discontinuous (in terms of days), therefore it is
not clear how to set a regression model. We picked up all fishing time data
with temperature and precipitation data of the dates that are available, and
tried different combination of explanatory variables, including previous days’
temperature and/or precipitation. The explanatory power is limited and the
estimated parameters are usually not significant (at level 5%). Other data or
approaches are to be pursued in this aspect.
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