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Abstract

Considering measurements of locations and radii at breast height made
at three different time points of the individual trees in ten Swedish Scots
pine plots, we employ the so called growth-interaction (GI) process for
the spatio-temporal modelling of the plots. The GI-process places trees
at random locations in the study region and assigns radii (sizes) to the
trees, which interact and grow with time. It has been used to model
Scots pine plots in previous studies, and to improve the fit we suggest
some modifications of the model: A different location assignment strat-
egy and a different function for the open-growth (growth in absence
of competition). We believe also that the space-time data contain too
small trees to reflect the open-growth properly, which primarily affects
the carrying capacity parameter. We evaluate the open-growth from
a separate set of data which consists of size and age measurements of
older and larger single Scots pines. This data set better represents the
open-growth of Scots pines than the space-time data sets. A linear rela-
tionship is found between the estimated site indexes of the plots and the
sizes, and this relationship is exploited in the estimation of the carrying
capacity. For each of the ten space-time data sets (plots) we estimate the
remaining parameters of the GI-process and finally, by means of some
Monte Carlo tests, we test the goodness-of-fit of simulated predictions
from the fitted model.

Keywords: Basal area, Carrying capacity, Goodness-of-fit, Growth-
Interaction process, Immigration-death process, L-function, Mark-correlation
function, Open-growth, Richards growth function, Scots pines, Site produc-
tivity index, Spatio-temporal point process.



1 Introduction

For a long time, statistical methods for (marked) spatial point processes have
been used extensively to determine various characteristics of forest stands (see
e.g. [5, 7, 11, 22]). For instance, different summary statistics, such as Rip-
ley’s K-function (see e.g. [5]), have been able to cast light on the inherent
mechanisms which govern the way individual trees are located spatially. Ad-
ditionally, the temporal development of the sizes of individual trees has also
been explicitly modelled (see e.g. [26]). Note, however, that when we are
considering different spatial features of a forest stand at a fixed time, we are
in fact, to some extent, also considering the temporal development of each
individual tree which has been present up to the current time point. Put dif-
ferently, we always regard some aspect of the spatio-temporal development of
all the trees when we consider either just one single tree, or when we consider
all the trees in the whole stand. Hence, if one wants a deeper understanding
of the inherent growth structures which govern the growth of individual trees
in a forest stand, it is reasonable to instead extend the study to consider the
full spatio-temporal development of the stand, since the spatial domain and
the temporal domain clearly are intertwined.

Our main objective here is to describe the development of young Scots pine
stands in Sweden. The specific approach chosen here is to fit the so called
growth-interaction (GI) process (see e.g. [3, 23]) to a collection of data sets.
More specifically, each data set under consideration consists of measurements
of individual trees in a single Scots pine stand at a few different time points.
For each individual tree we have recorded its location as well as its radius at
breast height (rbh) at all measurement times of the stand.

The GI-process is a spatio-temporal marked point process in which new
points (trees) arrive to the study region at random times and receive random
locations in the study region. Once they arrive they additionally receive sizes
(radii of disks centred on their locations) and they start growing and competing
until they finally die, either by competition or naturally.

A previous (initial) study similar to the current one has been conducted in
[3], where the GI-process was used to model one Scots pine data set of the same
type as the data sets considered here. It was indicated that the GI-process is
an appropriate model for such data. However, simulated point patterns of the
GI-process, which were generated based on the parameter estimates obtained
by fitting the GI-process to the data, had nearest neighbour distances which
were smaller than what was observed in the actual data. Furthermore, the
estimated open-growth, i.e. the growth of a tree when the competition with
other trees is negligible, suggested that after approximately 40 years (in open-
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growth) a Scots pine had reached its theoretical maximal attainable size –
its carrying capacity – and this should not be the case. In addition, the
observed size distributions in the data and in the simulations were different.
The suggested remedy was to change the form of the open-growth function in
the model, which controls the growth of a tree in absence of competition in the
model, to a more flexible one. Additionally, we also believe that by changing
the way we assign the locations to the new trees in the model, we may improve
the fit of the model. More specifically, instead of letting the location of a new
tree to be uniformly distributed in the study region, as was previously the case
(see e.g. [3, 23]), we now let the location of the tree be uniformly distributed
on the part of the study region which is not occupied by the other trees present
at its arrival time. Note that this is a natural assumption since trees do not
grow inside each other.

As previously mentioned, the carrying capacity, denoted by K, is one of
the parameters in the GI-process which governs the rate of the so called open-
growth of a tree in the model. By looking closer at the carrying capacity
estimates obtained in [3], we believe that the actual carrying capacity was un-
derestimated because the forest stand considered was so young. Since biased
carrying capacity estimates result in biased estimates of the open-growth be-
haviour, it is important to obtain fairly adequate estimates of K if we wish to
say something about the individual growth ability of a tree. We believe that
the underestimation of the carrying capacity which was seen in [3] is an effect
of not considering trees which are close to their full potential maximum sizes,
and this in turn is a consequence of the trees in the data set being young. Since
the data sets we consider in this study also only contain quite young trees,
we base the estimation of the carrying capacity on a completely separate set
of data which contains older trees – the open-growth data set. We point out
that the stands in both data sets grow in different regions of Sweden, and it
is most unlikely that they follow the exact same underlying growth patterns.
In particular, the soil on which one stand grows may be more fertile than the
soil of the next stand, and we would like to account for such variation between
the stands. The approach suggested here is to let the carrying capacity be ex-
pressed through the site productivity index SI, which is expressed as expected
dominant height at 100 years total age, and in the current data sets it has been
estimated according to [9]. The open-growth data set contains measurements
made from a large number of Scots pine stands at one given time point, and
each measurement consists of three parts: The size (diameter) of the largest
tree, the age of the largest tree and the stand’s SI-value. We believe that such
a data set reflects the open-growth behaviour fairly well since by considering
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the largest tree in a stand we most likely consider the tree in the stand which
has been subject to the least amount of competition. We note that in [18]
separate estimation of the carrying capacity has already been considered for
the GI-process, and a fixed value of 0.25 meter rbh for the carrying capacity
parameter was chosen.

The paper is structured in the following way. In Section 2 we present
the two data sets and in Section 3 we define the GI-process. In Section 4
the estimation approach for the open-growth is presented and the estimation
approach for the GI-process is recalled, and the obtained estimation results
are presented. In Section 5, we evaluate the goodness-of-fit of predictions of
the model. Finally, some discussions can be found in Section 6.

2 Scots pine data

In this paper we will consider two sets of data, the space-time data set and
the open-growth data set. Both are taken from the Swedish National Forest
Inventory (NFI). The NFI is an annual sparse stratified sample plot inventory
with partial replacement [16].

2.1 Space-time data

The space-time data set, which we model by the GI-process, consists of perma-
nent sample plots (radius 10 m) which have been established between 1983 and
1987 and re-measured for the first time after five years, i.e. between 1988 and
1992. About half of the sample was then re-measured a second time between
1993 and 1997. However from 1994 on the re-inventory interval was altered
to 6 years. Registrations consist of stand, site and tree variables [24]. Tree
species, diameter at breast height (1.3 m above ground), and position (with
coordinates) were measured for all trees with diameter of at least 10 cm on the
plots. Smaller trees were registered on a reduced plot and mapped only for a
few trees. Sample trees were selected from callipered trees with probabilities
given by their basal area. On sample trees also height, crown height and cause
of damage were registered.

In the present study 10 stands (plots) established 1985 were used for the
fitting of the GI-process, with data from 1985, 1990, and 1996. Note that
the years of measurements are the same for all 10 plots, but the ages (sample
times), Tj,1 (1985), Tj,2 (1990), Tj,3 (1996), j = 1, . . . , 10, of the 10 plots at the
measurement times differ. Additionally, a sub sample of these plots (5 plots)
re-measured a fourth time Tj,4 (2005) were used to evaluate the model.
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Figure 1: Swedish Scots pine plots recorded in 1985 (left), 1990 (middle) and
1996 (right). The radii of the pines are scaled by a factor of 10.

Each plot considered primarily consist of Scots pines (at least 90%) and
contains at least 10 trees. It should be noted that the plots considered are
quite young (see Table 1) and since only trees with a radius of at least (rbh)
0.05 m are considered, we restrict our study to the modelling of Scots pines
larger than 0.05 m rbh at early ages. It should further be pointed out that
for technical convenience, in the remaining part of the paper, we use rbh to
describe tree sizes rather than the more common diameter at breast height.
Furthermore, we will often simply refer to the rbh of a tree as its radius or
size. We note that a plot may contain trees which are not Scots pines, and we
have chosen to include the non-pine trees in the modelling since they affect
the spatial structure of the plot as well as its temporal development. In Figure
1 we find an example of a data set. Here all tree radii have been scaled by a
factor of 10 for increased visibility.

Regarding our notations, the circular spatial study region of radius 10
meters is denoted by W and recall that the three sample time points at
which the plot has been measured (ages in 1985, 1990 and 1996) are de-
noted by Tj,1, Tj,2, Tj,3. Furthermore, the jth data set is denoted by Xj =
(Xj(Tj,1),Xj(Tj,2),Xj(Tj,3)), j = 1, . . . , 10, and at each time point Tj,k we
have that Xj(Tj,k) = {(xi, mik)}, where xi and mik denote, respectively, the
location of the ith tree and the rbh at time Tj,k of the ith tree. We also de-
note by nTj,k

the number of trees which are alive at time Tj,k and by NTj,k

the total number of distinct trees which have been observed at the sample
times Tj,1, . . . , Tj,k, k = 1, 2, 3. Besides the information given in Xj , we also
have attached to each plot a value of the site index SI. Note that for some
data sets we have measurements Xj(Tj,4) from an additional time point Tj,4,
which will be used to evaluate predictions of the fitted GI-process. Some plot
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Table 1: Information about the data sets Xj , j = 1, . . . , 10: SI is the site
index, Tj,k, k = 1, 2, 3, is the kth inventory time (stand age), nTj,k

denotes
the number of trees which are alive at time Tj,k and NTj,k

is the number of
distinct trees which have been observed at Tj,1, . . . , Tj,k.

j SI Tj,1 Tj,2 Tj,3 nTj,1
nTj,2

nTj,3
NTj,1

NTj,2
NTj,3

1 13 23 28 34 15 21 29 15 21 29
2 14 22 27 33 13 26 43 13 26 43
3 16 45 50 56 12 15 17 12 15 17
4 17 30 35 41 2 15 23 2 15 23
5 21 29 34 40 27 45 50 27 45 50
6 19 32 37 43 24 36 48 24 36 48
7 18 25 30 36 34 39 40 34 39 40
8 20 23 28 34 40 51 52 40 51 53
9 14 45 50 56 11 14 16 11 14 16
10 15 45 50 56 9 15 15 9 15 15

characteristics are given in Table 1.

2.2 Open-growth data

Provided that two trees in a forest are close enough to each other, they will
compete for resources (e.g. light and nutrients). However, if the distance
between them is large enough, their competition becomes negligible. This
type of growth, i.e. growth without competition/interaction, is often referred
to as open-growth and it is often modelled by means of growth functions (see
e.g. [14, 20]).

When we model the growth of trees, one major part is to model the open-
growth and when we model the open-growth an important part is to estimate
the theoretical maximal attainable size – the carrying capacity. However, since
the plots in the space-time data set contain only fairly young trees, which have
not reached their full sizes, these plots do not fully reflect the potential open-
growth of Scots pines.

Hence, we choose to gain information about the open-growth from a sep-
arate set of data, the open-growth data set. The open-growth data set, which
will be used to explore the open-growth relationships of Scots pines, is based
on data collected in the NFI during 2003-2007. In the study 2579 pure pine
plots have been used. The open-growth data set has a wide distribution of
tree and stand level characteristics, i.e site index (SI) and tree age, see Fig-
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Figure 2: The open-growth data set: {(ti, SIj , yj)}n
j=1 (left), {(tj , yj)}n

j=1

(middle) and {(SIj , yj)}n
j=1 (right). For the largest tree of plot j, yj , tj and

SIj denote the rbh and the age of the tree, and the value of the site index SI
of the jth plot, respectively.

ure 2. Hence, it contains trees which have larger sizes and higher ages than
the trees in the space-time data set, and thus better reflects the open-growth.
To motivate this further, we note that one of the main components of the
GI-process is a growth function which controls the open-growth of the radii.
Hence, when modelling the GI-process it is essential that we are able to create
a good estimate of the open-growth of the pine trees.

Each observation in the open-growth data set {(yj , tj, SIj)} comes from a
pure Scots pine plot which has been measured at one time point. Specifically,
SIj denotes the SI-value of the jth plot, tj denotes the age (year) of the
largest tree present in the jth plot and yj denotes the largest tree’s rbh (meter).
Additionally, some initial filtering has to be performed in the open-growth data
in order to ensure that we are considering trees which have been subject to as
little competition as possible. We remove the observations which correspond
to the largest 1% and the smallest 1% of the ratios {yj/tj}. This is done since
a too large or too small values of yj/tj imply that measurement errors are
likely to be present. Next, we group the remaining observations by age, so
that all trees which have the same age are in the same group. Then, in each
age group, we remove the observations which correspond to the largest 2.5%
and the smallest 2.5% of the ratios {yj/tj}. As a result we have n = 2465
observations {(tj , SIj , yj)}n

j=1, where 10 ≤ SIj ≤ 28 and 6 ≤ tj ≤ 293. It
should further be pointed out that there is some uncertainty present in the
SI-values assigned to each plot/tree.

In Figure 2 it can be seen that the size development y over time (age) t
resembles the typical shape of a growth curve model (see e.g. [20]). It may
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further be observed that there tends to be a linear relationship between the
maximal attainable size y and the site index SI.

3 The GI-process

Consider the scenario where we have measured a plot at the time points 0 <
T1 < . . . < Tn = T within a study region W of size ν(W ). Recall that
in the current study, W is given by a circular region. As a model for its
spatio-temporal development we suggest the so-called growth-interaction (GI)
process [1, 3, 18, 23].

In the GI-process the arrivals of new trees (points) to W occur according
to a Poisson process on [0, T ] with rate αν(W ), α > 0. At their arrival
times B1 < . . . < BN , the N trees which arrive during [0, T ] are assigned the
locations (stock centres) X1, . . . , XN on W .

The size/radius (rbh) of the ith tree at time t ∈ [0, T ] is denoted by Mi(t)
and since we only observe the trees once their radii have reached a certain size
(recall that our modelling data consists of trees of at least 0.05 m rbh), we
let Mi(t) = 0 for all t < Bi and assign the initial size Mi(Bi) = M0 > 0 to
the ith tree. As time evolves the radii {Mi(t)}N

i=1 will grow and interact with
each other. Given that the ith tree has size Mi(t) at time t, its size-change
over the (infinitesimal) time interval (t, t + dt) is given by

Mi(t + dt) = Mi(t) + dMi(t) (3.1)

= Mi(t) +

(

f (Mi(t); θ) −
N
∑

j=1
j 6=i

h (Mi(t), Mj(t), Xi, Xj ; θ)

)

dt,

where θ is a parameter vector which controls the growth and interaction
pattern of the model and f (Mi(t); θ) is the growth function which governs
the open-growth of the ith tree. The function h (Mi(t), Mj(t), Xi, Xj ; θ) is
the spatial interaction function which handles the spatial pairwise interac-
tion/competition of the ith tree with the other (neighbouring) trees.

In accordance with [1, 3], a tree can also experience a (size dependent)
natural death: Given Mi(t), the probability that the ith tree suffers a natural
death during the (infinitesimal) time interval (t, t + dt) is given by µ/(1 +
Mi(t)) + o(dt), µ > 0 (equivalently, at each time t the potential remaining
lifetime of the ith tree is Exp(µ/(1 + Mi(t)))-distributed), and we note that a
tree becomes more viable as it grows in size. Additionally, the competition for
resources may cause a tree to die and we say that the ith tree has suffered a
competitive death if at some time t > Bi we have Mi(t) ≤ 0. Note that hereby
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the death time of the ith tree is given by the smallest of the natural death
time and the competitive death time, and we let Mi(t) = 0 once the tree has
died.

Returning to the locations of the trees, we let the location Xi of the ith
tree be uniformly distributed on the part of W which is not occupied by other
(the previous) trees at time t = Bi, i.e. Xi ∼ Uni

(

W \ ⋃i−1
j=1 BXj

[Mj(Bi)]
)

,
where the closed disk BXj

[Mj(t)], with centre Xj and radius Mj(t), represents
the (breast height) space which is occupied by the jth tree at time t. Note
that we hereby avoid pairs of points which are too close to each other (trees
do not grow inside each other). We further also note that this approach differs
from the earlier arrival strategy, where the locations are uniformly distributed
on all of W (see e.g.[23]).

We next discuss the specific choices made for the functions f(·) and h(·)
and details concerning them.

3.1 Spatial interaction

We now turn to the second function contained in expression (3.1) – the spatial
interaction function – which controls the competition between the trees. Many
options are available for h(·) (see e.g. [13, 19, 23]) and we here follow, among
others, [23] by employing the so called area interaction function (see e.g. [6]).
Its exact form is given by

h (Mi(t), Mj(t), Xi, Xj ; θ) = c
ν
(

BXi
[rMi(t)] ∩ BXj

[rMj(t)]
)

ν (BXi
[rMi(t)])

, (3.2)

where ν (BXi
[rMi(t)]) denotes the size of the closed disk BXi

[rMi(t)] and
the elements c ≥ 0 and r ≥ 1 of the parameter vector θ are referred to,
respectively, as the force of interaction and the scale of interaction. The
region BXi

[rMi(t)], which represents the region in which the tree competes
for resources, will be referred to as the influence zone of the ith tree at time
t (see e.g. [25]). We note that the ratio on the right hand side of expression
(3.2) is the proportion of the ith influence zone which is covered by the jth
influence zone at time t. Moreover, we note that if the distance ‖Xi − Xj‖ is
larger than rMi(t) + rMj(t), the influence zones do not overlap, whereby no
interaction takes place between the ith and the jth tree during (t, t + dt).

The motivation for this choice of interaction function mainly comes from
its non-symmetry. More specifically, large trees influence small trees more
than small trees influence large trees.

8



3.2 Open-growth

As previously mentioned, the open/individual growth function f (Mi(t); θ) in
expression (3.1) controls the growth of a tree in absence of competing neigh-
bouring trees. We note that in the case of no interaction, i.e. when h(·) = 0,
expression (3.1) turns into the equation dM(t)/dt = f (M(t); θ), M(0) = M0,
which has M(t) as its solution (for simplicity we here write M(t) for Mi(t)). In
the literature many different applications of different growth functions can be
found (see e.g. [20, 26]). We here present two general growth functions which
will be applied in this paper. Note that the parameters λ, K and δ, which
figure in the growth functions below, are elements of the parameter vector θ.

The first model considered is the Richards growth function (RGF) (see e.g.
[12, 20, 19]) and we have that

M(t) = K
(

1 +
(

(M0/K)δ − 1
)

e−λt
)1/δ

, (3.3)

where δ 6= 1, K > 0 and λ > 0. We note that through the RGF other growth
functions may be derived [12, 20]. For instance, the logistic growth function
(LGF) may be obtained by setting δ = −1 in (3.3). We point out that the
LGF previously has been evaluated in the context of the GI-process (see e.g.
[3, 19, 23]).

By transforming cumulative distribution functions (cdf’s), different growth
functions may be obtained [20]. Another model which we will consider is the
Weibull growth function (WGF) which is obtained through the cdf of the
Weibull distribution. More specifically, we have that

M(t) = K − (K − M0) e−(λt)δ

,

where K > 0, λ > 0 and δ > 0.
Both the RGF and the WGF are strictly increasing functions with carrying

capacity (theoretical upper bound) K and parameters λ and δ controlling the
growth rate/speed of M(t).

4 Estimation

4.1 Estimating the open-growth

We recall the open-growth data set {(tj , SIj , yj)}n
j=1, n = 2465, from Section

2.2, and also the observed linear relationship between the maximal attainable
size and the site index SI, which was seen in Figure 2. We argue that since
the carrying capacity K tells us how large a tree is allowed to become, it
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Figure 3: Fitted linear regressions w.r.t. the pairs (SI, qα(SI)). Left α = 0.95,
middle α = 0.975 and right α = 0.99.

seems sensible to let K be reflected by the fertility, i.e. the site index SI.
This linear relationship becomes even more clear in Figure 3, where we have
divided the observations into groups based on their SI-values, calculated the
quantiles qα(SI), α = 0.95, 0.975, 0.99, of the yj-values in each SI-group and
plotted the pairs (SI, qα(SI)), SI = 10, . . . , 28, together with the fitted linear
regression models.

We additionally see from Figure 2 that the size increases with time and
therefore, when α is large, qα(SI) will only be concerned with the older trees
in the SI-group. Furthermore, from Table 2 we see that the group with
SI-value 28 only contains four measurements and the largest rbh is 0.3155,
which explains why qα(28) becomes quite extreme. When ignoring qα(28)
and fitting linear regression models, we obtain q0.95(SI) = 0.1353 + 0.0033SI,
q0.975(SI) = 0.1365 + 0.0040SI, and q0.99(SI) = 0.1305 + 0.0051SI. All three
linear trends (intercept and slope) are significant at the 0.05 significance level
and QQ-plots together with Lillie-tests (H0 : data is Gaussian, H1 : data is
non-Gaussian) suggest that the residuals are normally distributed (Lillie-test
p-values: p0.95 = 0.2082, p0.975 = 0.0987 and p0.975 > 0.5). We have thus
established that there is some linear relationship between SI and K.

The usual approach to fitting a growth curve model to size measurements
made over time is to fit the (nonlinear) regression model Yj = M(tj ; θ) + ǫj to
the time-size measurements (tj , Yj), j = 1, . . . , n, where M(tj ; θ) is a growth
function and the ǫj’s are iid random variables with mean 0 and variance σ2.
We note that by accepting the linear relationship K = a0 +a1SI for the upper
bound of the rbh, we are considering the situation where we fit the regression
model

Yj = M(tj ; K, λ, δ) + ǫj = M(tj ; a0 + a1SIj , λ, δ) + ǫj (4.1)
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Table 2: Information about each SI-group, where n is the number of observa-
tions in the group and max yj is the size of the largest tree in the group.

SI 10 11 12 13 14 15 16
n 6 12 21 45 92 123 154

max yj 0.1725 0.1775 0.1980 0.1790 0.2345 0.2300 0.2375
SI 17 18 19 20 21 22 23
n 210 207 254 232 246 216 157

max yj 0.2190 0.2385 0.2350 0.2270 0.2415 0.2550 0.2865
SI 24 25 26 27 28
n 156 153 87 90 4

max yj 0.3330 0.2725 0.2525 0.2970 0.3155

to our data. Here M(t; ·) either is given by the RGF, the WGF or the LGF,
and we have chosen to include the LGF (as a comparison) since it is included in
most of the previous studies which consider the GI-model (see e.g. [3, 19, 23]).

Before fitting the growth curve model (4.1) to the open-growth data, we
merge the three first SI-groups as well as the last two SI-groups since there
is some uncertainty present in the SI-values, and since some of the SI-groups
are quite small. The new SI-values assigned to the new groups are obtained in
the following way. We take a weighted mean of the SI-values of the included
(old) SI-groups and the weights are determined by the number of observations
in each of the SI-groups included. More specifically, from Table 2 we find that
merging the SI-groups 10, 11 and 12, results in the SI-group SI10−12 which
has SI-value (6 ·10+12 ·11+21 ·12)/(6+12+21) = 11.3846. Furthermore, by
merging the SI-groups 27 and 28, we obtain the new SI-group SI27−28 which
has SI-value (90 · 27 + 4 · 28)/(90 + 4) = 27.0426. We note that the number
of observations in the groups SI10−12 and SI27−28 are 39 and 94, respectively.

Considering these new SI-groups, the results after fitting the regression
model (4.1) to the open-growth data set, in the context of the RGF, the WGF
and the LGF, can be found in Table 3.

Moreover, the corresponding (normal) QQ-plots of the residuals rj are
given in Figure 4. It is worth noticing that the parameter estimates do not
differ much from each other in the case of the RGF and the WGF. Furthermore,
we see in Figure 4 that the residuals are not normally distributed and, addi-
tionally, we see that the variance grows with the size of ŷj or, equivalently, that
the variance grows with increasing tj (since M(t; ·) is an increasing function).
We further also note that the RGF and the WGF generate almost identical
residuals whereas the LGF behaves a bit differently and not quite as well man-
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Table 3: The results after fitting the regression model (4.1) to the open-growth
data set, in the context of the RGF, the WGF and the LGF.

Param. est. â0 â1 M̂0 λ̂ δ̂

RGF 0.07418 0.00554 6.5 · 10−253 0.01752 1.29434
WGF 0.07602 0.00567 1.5 · 10−183 0.02078 0.83233
LGF 0.05164 0.00586 0.04078 0.04399 -
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Figure 4: The residuals rj obtained in the estimation (see Table 3) of the
RGF (left), the WGF (middle) and the LGF (right). Upper row: (normal)
QQ-plots of the residuals. Lower row: Plots of the predicted values versus the
residuals.

ages to capture the shape of the growth over time (the plot in the bottom right
corner of Figure 4 is slightly curved). Possibly a more accurate model would be
to consider a multiplicative error, i.e. Yj = M(tj ; a0 + a1SIj , λ, δ)ǫj . However,
since we are mainly concerned with the estimation of K, the specification of
the error term is of less importance to us.

To give an idea of the fitted growth curves, in Figure 5 we have plotted
them together with the data for the SI-groups SI10−12, SI17, SI22 and SI27−28.
Note that we obtain K̂|SI10−12 = 0.13730 and K̂|SI27−28 = 0.22412 for the
RGF, K̂|SI10−12 = 0.14063 and K̂|SI27−28 = 0.22948 for the WGF, and
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Figure 5: Plots of the estimated growth curves (see Table 3) together with the
data for the SI-groups SI10−12, SI17, SI22 and SI27−28.

K̂|SI10−12 = 0.11831 and K̂|SI27−28 = 0.20100 for the LGF. Also note that
all of these are much lower than the observed maximum radii.

4.2 Estimation of the carrying capacity

As we saw in the previous section, we were unable to successfully fit the three
growth curves to our open-growth data set. However, the observed linear
relationship between K and SI may still be exploited in order to obtain some
estimate for K.

To further explore the estimation of K, we now compare the estimates
K̂ = â0 + â1SI in Table 3 with the three linear regressions K̂ = qα(SI) =
b0 + b1SI, α = 0.95, 0.975, 0.99, which, just as before, are based on the α-
quantiles of each (new) SI-group. The results obtained can be found in Table
4 and just as before the linear relationship is significant in each case and
the residuals can be assumed to be normally distributed (Lillie-test p-values:
p0.95 > 0.5, p0.975 = 0.0587 and p0.99 = 0.3147).

We thus conclude that, for all SI-values, the maximal attainable size of
a tree suggested by K̂ = qα(SI) = b̂0 + b̂1SI is larger than the maximal
attainable size suggested by any of the (growth function) estimates of K in
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Table 4: Linear relationship between the α-quantiles qα(SI) and SI (α =
0.95, 0.975, 0.99).

α b̂0 b̂1 qα(SI10−12) qα(SI27−28)
0.95 0.12761 0.00367 0.16944 0.22698
0.975 0.12920 0.00441 0.17936 0.24835
0.99 0.13248 0.00517 0.19138 0.27240

Table 5: Estimates obtained after using the estimate K̂ = q0.975(SI) =
0.12920 + 0.00441SI and fitting the RGF, the WGF and the LGF to the
open-growth data set.

Param. est. M̂0 λ̂ δ̂

RGF 1.8 · 10−12 0.00821 1.80736
WGF 6.7 · 10−23 0.01456 0.68572
LGF 0.06689 0.01789 -

Table 3. As we can see from Figure 5, for SI10−12 the largest yj-values reach
approximately 0.2 and for SI27−28 they reach approximately 0.3, whence, it
seems more reasonable to use e.g. α = 0.975 when we employ qα(SI) = b̂0 +
b̂1SI to estimate K. Note that we do not use α = 0.99 because extreme values
in the data may contain measurement errors. We note that this choice of α
corresponds, more or less, to the fixed estimate K̂ = 0.25 used in [19], which
was motivated by the study conducted in [15]. In Table 5 we find the estimates
obtained after plugging K̂ = q0.975(SI) = 0.12920 + 0.00441SI into the three
growth curve models and, subsequently, estimated the remaining parameters,
as explained in Section 4.1.

In Figure 6 we have illustrated the fitted models and conclude that also
here the performance of the RGF and the WGF are very similar, whereas the
LGF behaves quite differently. The LGF has only two parameters (instead of
three) and it does not seem to manage to capture the growth at early ages.
Since the LGF can be obtained as a special case of the RGF and since its
performance, arguably, is a little poorer than the performance of the RGF
and the WGF, we choose not to proceed with the LGF in the spatio-temporal
evaluation. Furthermore, since the RGF and the WGF perform equally well,
we choose to only proceed with the evaluation of the RGF in the remainder
of the paper.
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Figure 6: The estimated growth curves (see Table 5) in the context of the
estimate K̂ = q0.975(SI) = 0.12920 + 0.00441SI, for SI10−12, SI17, SI22 and
SI27−28.

4.3 Estimation of the GI-process parameters

Having estimated K separately by K̂ = q0.975(SI) = 0.12920 + 0.00441SI, we
now turn to the space-time data and the estimation of the remaining parame-
ters, i.e. θ∗ = (λ, δ, c, r), µ and α. The estimation approach previously used to
fit the GI-process to space-time data was first introduced in [23] and in [3] it
was adjusted to accommodate the size dependent natural deaths. It consists of
two separate parts: The arrival and death rates α and µ are estimated using a
maximum likelihood (ML) estimation procedure while the growth and interac-
tion parameters θ are estimated (separately) through a least squares scheme.
In the case of θ, we here follow the approach suggested in [3], with the excep-
tion that we use the estimate K̂ = q0.975(SI) for the carrying capacity and
estimate θ∗ by means of the least squares approach.

In order to obtain the estimates θ̂∗ = (λ̂, δ̂, ĉ, r̂) for a given data set Xj , we
minimise the sum of squared differences S(θ∗) =

∑

k

∑

i(m̃ik(θ∗, K̂)−mik)2 be-
tween the observed sizes mik and the predicted (model based) sizes m̃ik(θ∗, K̂).
The first sum is taken over sample time points and the second sum is taken
over all trees which are alive at a specific sample time point. In finding θ̂∗ we
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have to rely on some numerical minimisation routine to minimise the sum of
squares S(θ∗), and we here choose to employ the same MCMC type of method
as was used in [3] (more details are given in [2]). Additionally, since there are
no observations available outside the study region W , we need some approach
to impede the consequences of the so called edge effects (see e.g. [5, 11]). Three
spatio-temporal edge correction methods, which were all presented in the con-
text of the GI-process, are suggested in [3] and here we employ the so called
simple edge correction method of [3] when we estimate θ∗.

Recall now the two previously mentioned ML-estimation approaches con-
sidered for the estimation of α and µ. The first approach, which was derived in
[2] and later employed in [3], is an approximate ML-approach which takes into
consideration that the size dependent natural deaths are governed by the prob-
ability µ/(1+Mi(t))+o(dt). The second approach, which was developed in [4],
is a full ML-estimation scheme based on the discretely sampled immigration-
death process (see e.g. [4, 8, 17]). We note that using the latter approach is
equivalent to letting the natural death probability be given by µ+o(dt), hence
not taking the size dependent natural deaths into consideration. Furthermore,
in this approach, when it compares the increase/decrease of number of trees
between two consecutive time points, it does not account for the competitive
deaths which have taken place. Although the approach of [4] not fully matches
the current model formulation, it manages better to take into account all the
unobserved arrival/death scenarios where some trees arrive and die during the
same time interval (Tj,k−1, Tj,k), k = 1, . . . , n, without being observed, and as
a result it generally performs better than the estimators of [2]. Hence, we will
use the ML-estimators of [4] to estimate α and µ.

4.4 Estimation results

Concerning the starting values used when we run the edge corrected estimation
procedure, we use the edge-corrected estimates obtained for the Scots Pine
data set considered in [3] as starting values for the interaction parameters c
and r, i.e. ĉ = 3.5 and r̂ = 4. Moreover, since [3] used the LGF as open-
growth function, for the RGF-part f(·; θ) we choose as starting values δ̂ = −1
and λ̂ = 0.1 (the latter being close to the value obtained in [3]). Furthermore,
we keep the estimate K̂ = q0.975(SI) = 0.12920 + 0.00441SI and the (known)
initial size M0 = 0.05 fixed throughout the whole estimation. Regarding
the specifics of the edge correction, for each data set we use three simulated
surroundings in each iteration and we average over the estimates of the last
four iterations to obtain the final estimates (see [3] for details). Furthermore,
we let the region on which we simulate the surrounding trees be given by
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Table 6: Edge corrected estimates of the growth and interaction parameters
together with their means and standard deviations (S.d.). SI is the value of
the site index.

j K̂ λ̂ δ̂ ĉ r̂ SI

1 0.18653 0.03450 0.07144 7.38389 4.25188 13
2 0.19094 0.05483 -0.47340 3.24789 3.74719 14
3 0.19976 0.08825 -0.83724 4.53837 5.92735 16
4 0.20417 0.02873 -0.46213 4.88429 5.14329 17
5 0.22181 0.08086 -0.86521 5.56370 4.57572 21
6 0.21299 0.07421 -0.83360 3.57790 2.98364 19
7 0.20858 0.05826 -0.59818 4.53696 2.57067 18
8 0.21740 0.04112 -0.35130 3.66954 4.86772 20
9 0.19094 0.06175 -0.88204 3.12824 5.35041 14
10 0.19535 0.02824 -0.75410 2.80455 3.44803 15
Mean - 0.05508 -0.59858 4.33353 4.28659 -
S.d. - 0.02165 0.30408 1.38185 1.08610 -

a square region of side length 25 m. In Table 6 we give the edge corrected
parameter estimates for all the data sets.

We see that the parameter estimates in Table 6 for the 10 data sets are quite
similar, except for plot 1, as was to be expected since the plots are quite similar.
In the case of the open-growth parameters, we see that SI does not vary much
between the plots and thus the estimates K̂(SI) = 0.12920 + 0.00441SI ≈
0.2 also do not vary much. We point out that the estimates of the open-
growth rates λ and δ on average behave a bit differently here where there is
competition present, compared to the case of the open-growth data set. In the
cases where δ is estimated to approximately -1, we have indications that the
open-growth behaves almost like the LGF. Furthermore, when δ̂ ≈ 0 (as in the
case of plot 1) we obtain an estimated open-growth which, in the competitive
settings of these plots, behaves approximately like the so called Gompertz
model (see e.g. [12]). We further also note that λ is estimated much larger
than the open-growth data estimate λ̂ = 0.00821 of Table 5. However, this was
expected since the inclusion of competition (which inhibits the open-growth)
forces the open-growth rate to be higher. Additionally, since all estimates of δ
were significantly smaller than the estimate δ̂ = 1.80736 in Table 5, this also
suggests that δ is decreased in order to compensate for the competition.

We see that r̂ ≈ 4.3, which means that the range of the competition of
a tree is estimated to be approximately 4.3 times the radius of the tree. As
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an example we see that a newly arrived tree competes for resources within a
distance of approximately r̂M0 = 4.3 · 0.05 = 0.215 m from its stem centre,
whereby its influence zone has size 0.145 m2. Similarly, if the estimates of
Table 6 also would be valid for the stands when they are older, whereby the
individual trees are older and larger, we see that the competition distance is
approximately r̂K̂(SI) ≈ 4.3 · 0.2 = 0.86 m and its influence zone has size
2.323 m2. For the force of interaction, we see that that the strength of the
competition between a tree and its neighbour (within competing distance),
i.e. the amount by which we inhibit the open-growth during (t, t + dt), is
approximately given by ĉ ≈ 4.3 times the proportion of the tree’s influence
zone which is overlapped by its neighbour’s influence zone. We point out
that the interaction parameters c and r (and their estimates) strongly depend
on each other [3] and, there is also a dependence between the open growth
parameters λ and δ (and their estimates) since they both control the open-
growth rate. Now, if we were to fix, say, λ and δ in the estimation, as a result
the estimates of c and r would be changed/adjusted to fit the growth of the
observed trees (at least to some extent). Hence, there is dependence between
all parameters λ, δ, c, r.

Note further that the numerical algorithm used to minimise the sum of
squares S(θ∗) stepwise samples random values for θ∗ as proposed estimates,
and then determines if the new proposal results in a smaller S(θ∗) than the
previous minimising θ∗ does. The stopping criterion used in this stepwise
procedure stops the algorithm once we have seen a threshold number of con-
secutive proposals without any minimisation of S(θ∗). Hence, more precise
estimates would possibly be obtained if this threshold were chosen larger.
However, using a larger threshold would be more time consuming since more
calculations of S(θ∗) would be needed.

We now turn to the estimates of the arrival and death rates α and µ. They
can be found in Table 7, and we note that they are based on the counts nj,T1

,
nj,T2

and nj,T3
in Table 1.

If we were to assume that the natural death probabilities are given by
µ + o(dt) (immigration-death process arrivals and natural deaths) and that
no trees are present at time 0, the number of trees present at time Tj,k will
be Poisson distributed with parameter α̂ν(W )(1 − e−µ̂Tj,k )/µ̂, where ν(W ) =
102π ≈ 314 (see [4]).

In the case of, say, plot 9, by considering Table 7 this translates to the
estimated expected number of alive trees at Tj,4 = 65 being 19.4979 and,
equivalently, the estimated standard deviation of the number of trees alive at
Tj,4 being

√
19.4979 = 4.4157. Further characteristics of Xj(Tj,4), for the data
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Table 7: Estimates of α and µ for each plot.

j α̂ µ̂

1 0.00633 0.07304
2 0.19439 2.34876
3 0.00134 0.01038
4 0.11781 2.46738
5 0.40926 2.85716
6 0.49576 4.32636
7 0.00335 0.01580
8 0.41909 2.58157
9 0.00136 0.01161
10 0.13438 2.81448

Mean 0.17831 1.75065
S.d. 0.19458 1.57865

sets which have a four inventory time, can be found in Table 8. Furthermore,
to have some idea of how the data sets behave on average w.r.t. the number
of alive trees, we may use the means in Table 7 to obtain estimates of the
expectation and standard deviation of the number of alive trees at, say, Tj,4 =
65, and we obtain, respectively, the values 31.9976 and 5.6567.

Since the GI-process that we are fitting uses size dependent natural deaths,
these estimates of the behaviour of the number of trees alive are not totally
correct (although they are almost correct in many cases). However, by com-
paring the number of alive trees nTj,4

at the fourth time point Tj,4 with these
estimates, we gain some insight to whether the estimates α̂ and µ̂ are too far
off. For instance, in the case of data set 9 we have that nT9,4

= 23, so from the
simple (approximate) prediction of 19.4979 we see that our estimates seem
fairly acceptable. We further point out that when we consider really large
times Tj,4, the expected number of trees alive at Tj,4 will be approximately
α̂ν(W )/µ̂ (see [4]). One may exploit this fact in future studies to improve the
estimates α̂ and µ̂. This follows since if there is information available about
the (approximate) maximum amount of trees which occupy a study region W
in old Scots pine stands, we can use this maximum number (divided by the
size ν(W )) to estimate the ratio α/µ, and this estimate may then in turn be
used as a condition/restriction when we estimate α and µ.

It is likely that the estimates of Table 7 are quite biased since we base the
estimation on only the three observations nTj,1

, nTj,2
and nTj,3

. Furthermore,
it was seen in [3], in the evaluation of the size-dependent estimators of [2],
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that µ became heavily biased and this further strengthens the belief that the
estimates in Table 7 are biased.

5 Goodness-of-fit of the fitted predicted model

Having fitted the GI-process to the data, we now want to test the goodness-
of-fit of the model and for this purpose we use measurements of the data at a
later time point Tj,4 > Tj,3 as reference.

To study, among other things, the spatial structure, we generate, say, 999
predictions of the jth data set at its fourth sample time Tj,4 by starting the
simulation of the GI-process with the estimated parameters in the marked
point pattern at time Tj,3, Xj(Tj,3), and from here running independent sim-
ulations up to the subsequent sample time point Tj,4. We then compare the
observed and the simulated data at time Tj,4 by looking at empirical distri-
butional properties of some summary statistics (by means of e.g. Monte-Carlo
test; see [5, 11]).

We have chosen a variance stabilised version of Ripley’s K-function, the
L-function, together with the mark-correlation function (mcf) as summary
statistics to describe the spatial behaviour of locations and sizes (see e.g.
[5, 11]). Note that the value of K(r) is proportional to the expected number of
further trees (points) within distance r of the typical tree, and the L-function
is defined as L(r) =

√

K(r)/π. The mcf, k(r), is a measure of the dependence
between the mark (radius) sizes of points at a given distance r from each other.
More specifically, in a marked point pattern with mean mark (average radius
size) m̄, by letting m1 and m2 be the marks (radii) of two typical points (trees)
which are distance r from each other, we define k(r) as the expected size of
the product m1m2, divided by m̄2 . In both cases we compare the observed
summary statistics with envelopes based on the predicted summary statistics
(see e.g. [5, 11]).

We have also chosen to look at some summary statistics typically used in
forestry. The first statistic considered is the total basal area per hectare T BA =
104∑

i m2
i4π/ν(W ). The other statistics considered are the basal area weighted

mean diameter W MD =
∑

i(2mi4)(m2
i4π)/

∑

i m2
i4π, the mean diameter m̄

and the number of trees alive at Tj,4, nTj,4
.

In Table 8 we find the observed and the expected number of alive trees,
for those plots that have a fourth inventory occasion. We see clearly that our
predictions (expectations) tend to underestimate the number of alive trees.

Below follow the results for only one plot, namely plot 9. We use the
estimates of Table 6 and Table 7 to generate the predictions, and the L-
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Table 8: Observed and expected number of alive trees, as well as stand ages,
for the plots with a fourth inventory occasion.

j 2 6 8 9 10
Tj,4 42 52 43 65 65
nTj,4

52 54 36 23 16
α̂ν(W )(1 − e−µ̂Tj,4)/µ̂ 26 36 51 19.5 15
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Figure 7: Left: L-function, L(r), for pine data set 9 at the last sample time
T4 = T9,4 = 65, together with simulated envelopes. Right: Mark correlation
function, k(r), for pine data set 9 at the sample time T4, together with sim-
ulated envelopes. The predictions (realizations) which are used to generate
the envelopes are created by starting 999 simulations of the GI-process in the
initial state X9(T3) and, based on the parameters in Tables 6 and 7, running
the simulations up to the subsequent sample time point T4.

function and mcf plots together with the prediction based envelopes can be
found in Figure 7.

Both in the case of the L-function and the mcf, we see from Figure 7 that
the curves estimated from the data clearly are inside the envelopes, and we
hereby conclude, based on the spatial structure, that the point pattern and
its marks can be generated by the estimated GI-process. Note, however, that
in general most data trees at time T9,3 and T9,4 are the same, but some new
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Figure 8: Radius histograms of the data (left) and a prediction (right). The
prediction has the same number of alive trees as the data.

trees appear and some existing ones may die between the two time points.
Moreover, it has been observed that the estimates of α and µ affect the spatial
structure to a large extent.

In the case of the remaining summary statistics, the comparison of the
data and the predictions can be made in the following way. Given one of
the summary statistic, S, let Ŝ denote the estimate of S based on the data
and let Ŝ1, . . . , Ŝ999 denote the summary statistic estimated from the 999 pre-
dictions. In order to assess whether to accept the fit of the model (w.r.t.
S), we order the 1000 estimated summary statistics Ŝ, Ŝ1, . . . , Ŝ999 according
to their increasing sizes, and check if the rank (position) of Ŝ is either very
small or very large. Note that the rank can be used to formally test the fit
(test statistic S) by means of Monte Carlo tests (see e.g. [5, 10]). Note also
that in the case of L(r) and k(r) tests can be constructed which are based
on whether the estimated curves fall outside the envelopes at any r (max-min
simultaneous/global envelopes).

In Figure 8 we find mark histograms for the data and one of the predictions.
Both have the same number of alive trees.

We see that the prediction (right) suggests that the radii can become larger
than the radii in the data (the largest tree in the prediction has radius 0.141
m and in the data it is 0.127 m). Furthermore, we also see that the radius
distribution of the data has a larger proportion of smaller trees than the pre-
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Figure 9: Mean residuals for the predictions for each tree.

dictions. It seems that the estimated model either has an open-growth which is
too strong, or the competition is too weak. Moreover, this might also suggest
that α̂ should be increased to increase the number of small trees.

In order to see how each tree behaves individually, we would like to mea-
sure the deviations between the actual radii and the predicted radii, for each
single data tree. For a given tree i alive at T9,3, denote by m

(1)
i4 , . . . , m

(999)
i4

its predicted sizes at time T9,4, and consider the corresponding residuals. In
Figure 9 we show the estimated mean residuals for each of the nT3

= 16 trees
which are alive at T9,3.

We see that almost all predictions are larger than zero, and we again
confirm that we have overestimated the growth. Note that since the trees in
X9(T3) are already well established at T3, their predicted growth during the
time interval (T3, T4) will become almost deterministic. This follows since the
newcomers in (T3, T4) are small and by the form of the spatial interaction
function in expression (3.2), small trees do not affect larger trees much. We
also note that if µ̂ is too high, most of the predictions of a given radius mi4 will
have m

(j)
i4 = 0 since these predicted trees will have suffered natural deaths.

During the prediction simulation, when a data tree dies, it will leave room
for simulated newcomers to grow more rapidly than they would have done
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Table 9: The rank of the observed radii mi4 among their predictions
m

(1)
i4 , . . . , m

(999)
i4 , i = 1, . . . , 16.

i 1 2 3 4 5 6 7 8
rank 93 93 90 1000 107 102 113 99

i 9 10 11 12 13 14 15 16
rank 98 78 86 91 106 91 999 92

Table 10: Observed summary statistics together with their ranks. For each
summary statistic is also given the mean and standard deviation of the pre-
dicted summary statistics.

Obs. Rank Mean S.d.
TBA 13.63825 143 15.11195 1.43486
WMD 0.16978 1 0.20670 0.00596

m̄ 0.14939 1 0.18392 0.00727
nT4

23 993 16.89690 2.15259

otherwise (since they are in a place with little interaction), whence the radius
distribution depends on µ̂.

We can also compare the predicted sizes with the actual sizes mi4 by
checking their ranks among their predictions. In Table 9 we find the ranks of
the sizes mi4 of the nT3

= 16 trees which were present at T3. Note that a low
rank means that the predicted sizes m

(1)
i4 , . . . , m

(999)
i4 generally are larger than

the actual size mi4.
As we can see most trees rank between the 8th and the 11th percentile,

which leads us to accepting the fit in the case of a specific tree at the sig-
nificance level (rank + 1)/1000, in all cases except for i = 4 and i = 15 (if
simultaneous testing is done the significance level must be adjusted for multi-
ple testing). Furthermore, by considering also Table 9 we see that two trees
tend to always stick out. An explanation for this could be that these trees have
small sizes and are neighbours of large trees, and since there are indications
that the estimated growth is strong, it is likely that these predicted trees are
killed by their predicted large neighbours.

In Table 10 we have summarized the values and the ranks of the observed
summary statistics, as well as the estimated means and standard deviations
of the predicted summary statistics.

We see that for the total basal area TBA we cannot reject the hypothesis
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that the process which has generated the TBA of the forest at time T4 and
the process which has generated the TBA of the predictions (the GI-process)
are the same. Furthermore, as was expected, due to the radius distributions
and the over-prediction of the radii, the fit of the model cannot be accepted
w.r.t. any of WMD or m̄. From the quick comparison of the expected number
of alive trees and the observed number of alive trees shown in Table 8, we saw
that the two did not deviate too much from each other. However, we here
have clear indications that the number of alive trees suggested by the model
is lower than its observed counterpart. Hence, either α is underestimated or
µ is overestimated, and we note that this can be redeemed by including more
sample (inventory) times in the estimation of α and µ.

6 Discussion

In this paper, by using the open growth data set, a linear relationship was
found between the site productivity index and the large tree sizes, which pro-
vides a good approach estimating the carrying capacity. The performances of
some open growth models were compared, and it was shown that the Richards
or Weibull growth functions better capture the open growth behaviour for
Scots pines, than the logistic growth function used in the earlier studies. Evalu-
ation of our growth-interaction process for spatio-temporal modelling of forest
stands based on the space-time data was conducted. The preliminary results
indicated that, based on the spatial structure, the point patterns and marks
can be generated by the estimated GI-process, according the L-function and
the mark-correlation function tests. The forest stand characteristics were also
evaluated. The predicted total basal area per hectare performed reasonably
well, but not the mean diameter or the basal area weighted mean diame-
ter. Both of them were overestimated compared to the observed values. The
number of stems in the plots for which we have made predictions were under-
estimated, except for one plot. For unknown reasons the observed mortality
(death rate) between the third and the fourth inventory times was unusually
high on that plot.

Since the estimates of the GI-model parameters are dependent on the ex-
pected tree population at a given time point, a starting point in our continuing
work will be to further investigate the arrival and death process. Hereby, it is
also required that we have more frequently sampled data. We have chosen to
model the tree population with a diameter at breast height (dbh) equal to or
larger than 10 cm because we have complete spatial information of these trees.
Note that today’s forestry focuses on low death rate and rather regular spatial
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arrangement of established seedlings, which differs from naturally regenerated
forests. Additional information about potential arrivals (i.e. trees ¡ 10 cm dbh)
at a given time point would probably gain the model evaluation and develop-
ment. The modelling data in the present study are all rather young at the first
inventory time with a large amount of new arrivals exceeding the threshold
diameter (10 cm dbh). To better describe and capture the development of
pine stands during the whole life cycle, the data must be supplemented with
older stands.
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