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Abstract
A two-way linear mixed model consisting of three variance components,
σ2

1, σ2
2 and σ2

e is applied to evaluate the performance of the modified vari-
ance component estimator obtained from Henderson’s (1953) method 3,
developed by Al-Sarraj and von Rosen (2009). The estimator of interest
σ2

1, is obtained and modified, from two different partitions, (partition
I and partition II), of the Henderson’s method 3 equations. By means
of simulation, we evaluate the performance of these variance component
estimators. The evaluation is in terms of mean square errors, estimated
biases and probability of obtaining negative estimates. In addition, the
comparison includes also variance component estimators obtained from
likelihood-based procedures, REML and ML. The effect of imbalance
and number of observations on mean square error is given. The modi-
fied Henderson’s method 3 variance component estimator obtained from
partition I is recommended for values of σ2

2/σ2
1 < 1.0. In terms of mean

square errors and probability of obtaining negative estimates, the mod-
ified Henderson’s method 3 has achieved improvement over the corre-
sponding non-modified ones. Further, unlike the likelihood-based esti-
mators, the modified variance component estimators are non-iterative,
and therefore computationally faster, with similar performance in terms
of mean square error as the ML estimator.
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1 Introduction
Variance component estimation has a wide application in various fields of
science e.g. it is often used in population genetics and applied animal breeding.
There are several estimation methods found in the literature (see e.g. Searle,
Casella & McCulloch (1992)), bearing in mind each of those methods has its
own advantages and disadvantages.

The most commonly used methods are the ANOVA method, the Mini-
mum Quadratic Unbiased Estimator (MINQUE) and the Minimum Variance
Quadratic Unbiased Estimator (MIVQUE) by Rao (1971a, 1971b, 1972), the
likelihood-based procedures (the Maximum likelihood estimator (ML) and
the Restricted Maximum Likelihood Estimator (REML) by Hartley and Rao
(1967) and Patterson and Thompson (1971) respectively). The obtained ML
and REML estimators have good statistical properties. They are functions
of the sufficient statistics, are consistent, asymptotically normal, and further,
the asymptotic sampling dispersion matrix of the estimators is known. How-
ever, these likelihood-based procedures are computationally demanding, and
an extensive review of the procedures has been presented by Harville (1977).

Henderson (1953) presented the non-iterative ANOVA-like methods that
give rise to unbiased variance component estimators. The methods are known
as Henderson’s method 1, 2 and 3; each of which is suitable for a certain
situation. Method 3 is the most general one, it allows for fixed, random and
interaction effects in the model. However, the obtained estimators can assume
negative values; a fact that renders them inferior to the ones obtained by the
likelihood-based procedures. Therefore, an attempt was made to improve the
unbiased variance component estimator obtained from applying Henderson’s
method 3 in a two-way linear mixed model (see Al-Sarraj & von Rosen (2009)).
Further, the modified variance component estimator was shown to perform
better in terms of mean square error criteria under certain conditions.

Rönneg̊ard et al (2009) tested the utility of the modified Henderson’s
method 3 estimator in a Quantitative Trait Loci (QTL) study as an alternative
method for the likelihood-based procedures commonly used in this particular
field.

The aim of the current study is to compare and evaluate the performance
of the modified estimators (obtained by Al-Sarraj and von Rosen (2009) from
two different decompositions/partitions of Henderson’s method 3) with the
non-modified variance component estimator. Further these estimators were
compared to ML and REML estimators. The comparison was performed in
terms of mean square error (MSE), estimated biases, and the probability of
getting negative variance estimates.
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2 Material and methods

2.1 Two-way linear mixed model

The considered model is a two-way linear mixed model:

Y = Xβ + Z1u1 + Z2u2 + e, (2.1)

where Y is an n×1 vector of observations distributed as a multivariate normal
MVN (Xβ, V ), X : n × m the design or incidence matrix of known elements,
β : m×1 a vector of unknown fixed effect parameters and e : n×1 a vector rep-
resenting the within-subject variability or the measurement error distributed
as e ∼ MV N(0, σ2

eI), where I is the n × n identity matrix. The first random
effect of (2.1) u1 is a p × 1 vector normally distributed u1 ∼ MV N(0, σ2

1I),
whereas the second random effect is represented by u2 a q × 1 normally dis-
tributed vector u2 ∼ MV N(0, σ2

2I). Further, Z1 : n × p and Z2 : n × q are
known incidence matrices, V = σ2

1V1 +σ2
2V2 +σ2

eI is the dispersion matrix and
V1 = Z1Z ′

1 and V2 = Z2Z ′
2 are known design matrices. The variance compo-

nents in (2.1) are σ2
1, σ2

2 and σ2
e ; the first two correspond to the first and second

random effect, whereas the third is the variance of the error component.

2.2 Modified Henderson’s method 3

Henderson’s method 3 was one of the three methods Henderson developed in
1953, which dealt with the deficiencies of Henderson method 1 and 2, for details
see Searle, Casella and McCulloch (1992). The modified version is based on
Henderson’s method 3 equations, but relaxes the condition of unbiasedness.
Henderson’s method 3 is applied on a two-way linear mixed model (2.1), where
two decompositions of the equations are studied referred to as partition I and
partition II.

In partition I, three variance components are included; σ2
1, σ2

2 and σ2
e

whereas, only two variance components are included in partition II; σ2
1 and σ2

e

where σ2
2 is eliminated by an orthogonal projection. In both partitions, the

work was focused on σ2
1.

For the two partitions, this variance component estimator was improved
by perturbing the standard unbiased estimator so that the obtained estimator
would have a mean square error that is less than the non-modified one, for
details see Al-Sarraj and von Rosen (2009), Kelly and Mathew (1994). The
variance component estimators resulting from partition I and II are denoted
σ̂2

1,u1 and σ̂2
1,u2 respectively, whereas their corresponding modified estimators

are denoted σ̂2
1,m1 and σ̂2

1,m2 respectively. All four variance component esti-
mators are given in Appendix A.
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2.3 Measure of imbalance

In unbalanced data the number of observations at each level of the random
effect is different, and a measure is needed to quantify the imbalance. In (2.1),
the number of observation ni defines the structure of the data at different levels
of the random effects. Ahrens and Pincus (1981) proposed several measures
of imbalance which under certain transformations are identical, one of which
is

vm(n) = 1
m
∑

(ni
n )2 , (2.2)

where n =
∑

i ni, m = p (or q) and i = 1, · · · p (or 1, · · · q). In unbalanced
data the value of vm(n) is within the range 1

m ≤ vm(n) < 1; so the smaller
the vm(n) value is the more imbalanced the data are. The maximum value of
vm(n) = 1 occurs only when the data are balanced. For a two-way linear mixed
model (2.1), vp(n) and vq(n) denote the imbalance for the design matrices Z1
and Z2 respectively. Here, the following measure is suggested to calculate the
imbalance in the considered examples, given in Appendix C,

v(n) = 0.5vp(n) + 0.5vq(n).

2.4 Monte Carlo comparisons and simulations

The variance component estimators resulting from applying the different meth-
ods of estimation are compared in the context of different patterns of data and
true values of the variance components. Swallow and Monahan (1984) illus-
trated that the subgroup means and subgroup sums of squares are sufficient
for the variance component estimators. This was exploited in our Monte Carlo
simulation by using a modified polar method (Marsglia and Bray, 1964) for
generating normal random variables. Six different examples given in Appendix
C which were also considered by Al-Sarraj and von Rosen (2009), are used.
Following subsection 2.3, the degree of imbalance was calculated for these six
examples, see Table 1.

The value of v(n) shows the following: Example 1 is a balanced case,
whereas, Examples 2 and 4 are almost balanced. The remaining Examples 3,
5 and 6 are more unbalanced than the others.

In the following subsections, we compare the different estimators based
on Henderson’s method with ML and REML. The MSE, estimated bias and
probability of getting negative estimates for these estimators are investigated
in five different case studies:
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Table 1: The imbalance measure for each example

Example n p q vp(n) vq(n) v(n)
1 8 2 2 1 1 1
2 8 2 2 0.9412 0.9412 0.9412
3 8 2 2 0.8000 0.9412 0.8706
4 21 3 3 0.9439 0.9866 0.9653
5 30 3 3 0.8571 0.7937 0.8254
6 30 4 3 0.8858 0.8772 0.8815

Case 1: The impact of varying σ2
2 for a given value of σ2

1 on the MSE.
Case 2: The impact of varying σ2

1 for a given value of σ2
2 on the MSE.

Case 3: Probability of obtaining negative estimates.
Case 4: The choice of partition (I or II) depending on the ratio σ2

2/σ2
1.

Case 5: The influence of the number of observations on the MSE.

For each simulation 1000 replicates were used. For the ML and REML esti-
mates, the lmer() function in the lme4 R package (Bates and Maechler, 2010)
was used.

2.4.1 Case 1: The impact of varying σ2
2 for a given value of σ2

1 on
the MSE

The main idea behind modifying the variance component estimators for the
two considered partitions was to obtain an estimator that would perform bet-
ter in terms of MSE criteria. Thus, for partition I and II, the MSE(σ̂2

1,u1)
should be less than MSE(σ̂2

1,u2), likewise their modified corresponding esti-
mators MSE(σ̂2

1,m1) less than MSE(σ̂2
1,m2) and for this to be achieved there

are a range of values for σ2
2. Therefore, we chose ten different values of

σ2
2 = 0.01, 0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 1, 1.5, 2 for calculation of the MSEs

of the variance component estimators σ̂2
1,u1 , σ̂2

1,u2 , σ̂2
1,m1 and σ̂2

1,m2 that would
thereafter be compared. The true values for the other parameters, used in
the simulation, were µ = 0, σ2

1 = 0.1, σ2
e = 0.9. The equations used to es-

timate σ̂2
1,u1 , σ̂2

1,u2 , σ̂2
1,m1 and σ̂2

1,m2 are given in (A.1),(A.3),(A.2) and (A.4)
respectively. The observed MSEs of the variance component estimators were
calculated as in Appendix D and the MSEs of the variance component es-
timators obtained from the two considered partitions (I and II) is given in
Appendix B. For further details and calculations of the MSEs see (Al-Sarraj
& von Rosen, 2009).
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2.4.2 Case 2: The impact of varying σ2
1 for a given value of σ2

2 on
the MSE

As the MSEs of σ̂2
1,u1 and σ̂2

1,m1 depend among others on σ2
1, in this analysis

we chose one value from the range of σ2
2 < 0.1 based on Case 1 with 10 dif-

ferent values of σ2
1 = 0.001, 0.01, 0.05, 0.10, 0.15, 0.20, 0.5, 1.0, 2.0, 5.0. For the

simulation, the true values of µ = 0 and σ2
e = 0.9 were applied, and from the

range of σ2
2, 0.05 was chosen. Moreover, the MSEs of the variance component

estimators σ̂2
1,u1 , σ̂2

1,m1 , σ̂2
1,u2 and σ̂2

1,m2 were compared, and further the com-
parison included variance component estimators obtained by the commonly
used methods σ̂2

1,ML and σ̂2
1,REML. Besides, for the ten different values of σ2

1,
the estimated biases for all the examples were calculated.

2.4.3 Case 3: Probability of obtaining negative estimates for the
two partitions

For all the six examples including both partitions (I and II) and their modified
corresponding estimators, the probability of obtaining negative estimates was
determined, see Appendix D.

2.4.4 Case 4: The choice of partition (I or II) based on the ratio
σ2

2/σ2
1

Based on the results from Case 1 and Case 2, for MSE(σ̂2
1,u1) and MSE(σ̂2

1,m1)
to be smaller than MSE(σ̂2

1,u2) and MSE(σ̂2
1,m2), respectively, a value range

for σ2
2 < 0.1 was recommended. However, since the true values of the variance

components may vary within a wide range, there was a need to extend σ2
2 < 0.1

for wider application purposes and consequently the ratio σ2
2/σ2

1 was consid-
ered. Based on the same calculation mentioned above, the ratio σ2

2/σ2
1 < 1

was applied and from which σ2
2/σ2

1 = 0.8 was chosen; a ratio that could be
obtained from many different values of σ2

2 and σ2
1. For the simulation we ap-

plied the following variance components’ values σ2
2 = 0.8, 4, 12, 24, 40, 80 and

σ2
1 = 1, 5, 15, 30, 50, 100. Hence, the range of σ2

2 and σ2
1 could cover many true

values in real experiments. For the other parameters in the model, the values
µ = 0 and σ2

e = 0.9 were applied. For Examples 2 and 5, the same above
mentioned ratio was tested and the MSEs of σ̂2

1,u1 , σ̂2
1,u2 , σ̂2

1,m1 and σ̂2
1,m2 were

obtained.
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2.4.5 Case 5: The influence of the number of observations on the
MSE

The main task here, was to see what impact n would have on the MSEs of
the different variance component estimators. For the simulation, σ2

1 = 1,
σ2

2 = 0.05, σ2
e = 0.9 and µ = 0 were used. The MSEs of σ̂2

1,u1 , σ̂2
1,m1 and σ̂2

1,ML

were calculated. Example 5, being most unbalanced, was applied as the basic
experiment. Four different n = 30, 150, 450, 900 were used, and thereafter
MSEs were calculated for the different values of n.

3 Results

3.1 Case 1: The impact of varying σ2
2 for a given value of σ2

1
on the MSE

Example 1 is a balanced case and the MSEs of σ̂2
1,u1 and σ̂2

1,u2 were therefore
equal (Table 2). This was also the case for σ̂2

1,m1 and σ̂2
1,m2 (Table 3). Fur-

thermore, in Example 2, the MSE of σ̂2
1,u1 was similar to those of σ̂2

1,u2 since
Example 2 is close to balanced. In Example 4, the MSE(σ̂2

1,u1) was smaller
than MSE(σ̂2

1,u2) when σ2
2 was small. Meanwhile, when the value of σ2

2 was
large the MSE increased dramatically. For Examples 3, 5 and 6, both MSE of
σ̂2

1,u1 and σ̂2
1,m1 showed a successively rising trend as σ2

2 increased. Since the
MSEs of σ̂2

1,u2 and σ̂2
1,m2 are independent of σ2

2 by definition, their observed
MSEs remained unchanged. The MSE of all four estimators benefited from
larger n as expected.

Moreover, for a fixed σ2
1 = 0.1 and changes in σ2

2, both σ̂2
1,m1 and σ̂2

1,m2 were
improved substantially in comparison to the non-modified variance component
estimators σ̂2

1,u1 and σ̂2
1,u2 in terms of MSE.

In the last columns of Tables 2 and 3 the range of values of σ2
2 is given

where the MSEs of σ̂2
1,u1 and σ̂2

1,m1 were found to be less than the MSEs for
σ̂2

1,u2 and σ̂2
1,m2 , respectively. Based on the results from Table 2 and Table

3, partition I is recommended for σ2
2 < 0.1 in all the unbalanced examples

considered.

3.2 Case 2: The impact of varying σ2
1 for a given value of σ2

2
on the MSE

The observed MSEs of σ̂2
1,u1 were lower than σ̂2

1,u2 except in Example 1 and
Example 2 (Table 4). Partition I showed lower MSEs than partition II for

6
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σ2
1 > 0.01. Furthermore, the difference in MSEs between the modified and

non-modified estimators increased with the value of σ2
1.

It was also observed that the MSEs of σ̂2
1,ML were smaller than σ̂2

1,REML

for all the considered examples. In addition to that, the MSEs of both σ̂2
1,ML

and σ̂2
1,m1 were very close and lower than all the other estimators’ MSE. Hence,

σ̂2
1,ML and σ̂2

1,m1 can be recommended when MSE is concerned.
The estimated biases of σ̂2

1,m1 , σ̂2
1,m2 and σ̂2

1,ML increased dramatically, and
the results were no longer appealing when σ2

1 was large (Table 5). Whereas, the
biases for the two non-modified estimators (σ̂2

1,u1 and σ̂2
1,u2) and σ̂2

REML were
more robust and approximately equal to 0. Hence, when unbiasedness is the
main concern, the variance component estimators obtained from Henderson’s
method 3 and REML is recommended.

3.3 Case 3: Probability of obtaining negative estimates for the
two partitions

The probability of obtaining negative estimates in all of the examples was
similar for both σ̂2

1,u1 and σ̂2
1,m1 , and likewise for σ̂2

1,u2 and σ̂2
1,m2 (Table 6). It

was also observed that the probability of negativity concerning the estimators
of both partitions decreased with larger values of σ2

1. Most importantly, the
modified estimators had smaller probability of negativity in comparison with
the non-modified ones.

3.4 Case 4: The choice of partition (I or II) depending on the
ratio σ2

2/σ2
1

In Example 2 which has a low n, the MSEs of σ̂2
1,u1 were larger than the

ones for σ̂2
1,u2 apart from a few cases with small differences (Table 7). A

similar observation, was made for the MSEs of the modified estimators, i.e.,
MSE(σ̂2

1,m1) was less than MSE(σ̂2
1,m2). On the other hand, in Example 5,

the MSEs of σ̂2
1,u1 and σ̂2

1,m1 were lower than the MSEs of σ̂2
1,u2 and σ̂2

1,m2
respectively. These two examples show that partition I seems to perform better
for σ2

2/σ2
1 < 1.0. We can conclude that if the MSE is the main interest, the

modified estimator σ̂2
1,m1 should be preferred over the other three considered

estimators σ̂2
1,u1 , σ̂2

1,u2 and σ̂2
1,m2 .
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Table 7: The observed MSE for estimation of σ2
1 based on σ2

2/σ2
1 = 0.8, µ = 0,

σ2
2 = 0.05 and σ2

e = 0.9 with N = 1000 simulations

σ2
2/σ2

1 = 0.8
Ex est. 0.8,1 4,5 12,15 24,30 40,50 80,100

σ̂2
1,u1

2.8979 57.3405 423.4799 995.3098 4847.170 19240.168
2 σ̂2

1,u2
2.9417 56.0465 420.1413 1015.9780 4848.737 19415.408

σ̂2
1,m1

0.7336 17.3185 145.6219 383.3311 1657.436 6583.363
σ̂2

1,m2
0.7399 17.2168 145.4236 384.9611 1653.197 6612.680

σ̂2
1,u1

1.7133 34.8602 267.2678 1204.2242 3348.202 12375.354
5 σ̂2

1,u2
1.7311 36.6264 274.2066 1221.0254 3351.043 13188.749

σ̂2
1,m1

0.6093 13.5307 113.3753 475.6935 1356.286 5197.689
σ̂2

1,m2
0.6408 14.9743 125.7473 520.3050 1447.766 5734.068

3.5 Case 5: The effect of the number of observations on the
MSE

The difference in MSE between the variance component estimators decreased
for large n (Figure 1). The MSEs of σ̂2

1,u1 were more sensitive for the changes
in n than σ̂2

1,m1 and σ̂2
1,ML. If n was large enough, then the MSEs of the

estimators were approximately equal and the unbiased estimators should be
preferred.

0 200 400 600 800

0
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0
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0
.8

1
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.2

1
.4

Number of observations (n)

M
S

E

Henderson III

Maximum Likelihood

Modified Henderson III

Figure 1: Observed MSE for different n=30,150,450,900. The simulated variance compo-
nents were σ2

2 = 0.05,σ2
1 = 1, σ2

e = 0.09. MSE calculated from 1000 simulation replicates.
Partition I was used for the Henderson III and modified Henderson III estimates.
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4 Conclusion
The main conclusion from our simulation study is that in terms of MSE and
probability of obtaining negative estimators, the modified estimators from the
two partitions perform better than their non-modified corresponding estima-
tors. However, when unbiasedness is the main concern, the (non-modified)
Henderson’s 3 estimators and the REML estimator are preferred. The simu-
lation results also give a guideline for when to choose partition I rather than
partition II. Further, the results show that when n is large and the MSE is
the main concern, σ̂2

1,m1 can be preferred over the other considered estimators
i.e., σ̂2

1,u1 , σ̂2
1,u2 and σ̂2

1,m2 .
Regarding imbalance, σ̂2

1,m1 is more robust and performs better than σ̂2
1,u1 .

Furthermore, if MSE is of interest, the σ̂2
1,ML and σ̂2

1,m1 are very close and
have lower MSE than all the other considered estimators. Moreover, for all
the considered examples the modified variance component estimators have in
general a lower MSE than their corresponding non-modified ones. Further,
the probability of obtaining negative estimates was smaller for the modified
variance component estimators than the non-modified ones.

Hence, our simulation study gives improved insight to the biasedness and
accuracy of modified Henderson’s method 3 for variance component estima-
tion. Besides giving insight to variance component estimators in general, our
results give guidelines for applied research (e.g. Rönneg̊ard et al. 2009).
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Appendix

A Expressions for the reduction sum of squares
needed for Henderson’s method 3

To estimate the variance components of the model (2.1) we define the following
matrices [X], [X, Z1] and [X, Z1, Z2]. The corresponding projection matrices
are

Px = X(X ′X)−X ′,

Px1 = (X, Z1)((X, Z1)′(X, Z1))−(X, Z1)′,

Px12 = (X, Z1, Z2)((X, Z1, Z2)′(X, Z1, Z2))−(X, Z1, Z2)′,

where − represents the g-inverse AA−A = A. The first set of estimation
equation partition I is based on

R(u1/β)
R(u2/β, u1)
SSE

where R(·) denotes the reduction sum of squares, R(u1/β) = Y ′(Px1 − Px)Y ,
R(u2/β, u1) = Y ′(Px12 − Px1)Y and the residual sum of squares is denoted by
SSE = Y ′(I − Px12)Y , see Searle (1971). The obtained variance component
estimator from partition I is

σ̂2
1,u1 = Y ′(Px1 − Px)Y

tr(Px1 − Px)V1
− tr(Px1 − Px)V2Y ′(Px12 − Px1)Y

tr(Px1 − Px)V1tr(Px12 − Px1)V2

+ kY ′(I − Px12)Y
tr(Px1 − Px)V1tr(Px12 − Px1)V2tr(I − Px12)

. (A.1)

The modified variance component estimator given by Al-Sarraj and von
Rosen (2009) is as below:

σ̂2
1,m1 = c1(Y ′(Px1 − Px)Y

tr(Px1 − Px)V1
− tr(Px1 − Px)V2d1Y ′(Px12 − Px1)Y

tr(Px1 − Px)V1tr(Px12 − Px1)V2

+ kd2Y ′(I − Px12)Y
tr(Px1 − Px)V1tr(Px12 − Px1)V2tr(I − Px12)

). (A.2)
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For the coefficients c1, d1 and d2 given in (A.2) we have the following values

c1 = 1
2

[tr(Px1 −Px)V1]2 [tr(Px1 − Px)V1(Px1 − Px)V1] + 1
,

d1 = 1
2

[tr(Px12 −Px1 )V2]2 [tr(Px12 − Px1)V2(Px12 − Px1)V2] + 1
,

d2 =
(tr(Px1 −Px)V2)
tr(Px12 −Px1 )V2

d1tr(Px12 − Px1) − tr(Px1 − Px)

[ k
tr(Px12 −Px1 )V2

][ 2
tr(I−Px12 ) + 1]

,

where V1 = Z1Z ′
1, V2 = Z2Z ′

2 and k = tr((Px1 − Px)V2)tr(Px12 − Px1) −
tr(Px1 − Px)tr((Px12 − Px1)V2). For details and calculations see Al-Sarraj and
von Rosen (2009). For the second set of estimation equations partition II we
need to define [X, Z2] and the corresponding projection matrix

Px2 = (X, Z2)((X, Z2)′(X, Z2))−(X, Z2)′.

Partition II is based on the following set of equations{
R(u1/β, u2)
SSE

where R(u1/β, u2) = Y ′(Px12 −Px2)Y and SSE = Y ′(I −Px12)Y . The obtained
variance component estimator from partition II is

σ̂2
1,u2 = tr(I − Px12)Y ′(Px12 − Px2)Y − tr(Px12 − Px2)Y ′(I − Px12)Y

tr(Px12 − Px2)V2tr(I − Px12)

= Y ′(Px12 − Px2)Y
tr(Px12 − Px2)V1

− tr(Px12 − Px2)Y ′(I − Px12)Y
tr(Px12 − Px2)V1tr(I − Px12)

. (A.3)

The modified variance component estimator of partition II is:

σ̂2
1,m2 = c2Y ′(Px12 − Px2)Y

tr(Px12 − Px2)V1
− c2ε1tr(Px12 − Px2)Y ′(I − Px12)Y

tr(Px12 − Px2)V1tr(I − Px12)
. (A.4)

Now for the coefficients that are involved in partition II, i.e., c2 and ε1 given
in (A.4) we refer to Kelly and Mathew (1994). However, we have calculated
the values such that they would be appropriate for the second set of estimation
equations partition II,

c2 = 1
2

[tr(Px12 −Px2 )V1]2 [tr(Px12 − Px2)V1(Px12 − Px2)V1] + 1
,

ε1 = 1
2

tr(I−Px12 ) + 1
.
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B
For simplicity and before we write the mean square error equations for the
variance component estimators obtained in (A.1), (A.2), (A.3) and (A.4) we
define the following

A = (Px1 − Px), B = (Px12
− Px1), C = (I − Px12),

a = tr(Px1 − Px)V1, b = tr(Px12 − Px1)V2, c = tr(I − Px12),
d = tr(Px1 − Px)V2, e = tr(Px12 − Px1), f = tr(Px1 − Px).

The MSEs for the non-modified and modified variance component estimators,
i.e., σ̂2

1,u1 and σ̂2
1,m1 respectively, obtained from partition I are as follows:

(i) The MSE of σ̂2
1,u1

MSE(σ̂2
1,u1)

= [ 2
a2 tr(AV1AV1)]σ4

1 + [ 2
a2 tr(AV2AV2) + 2d2

a2b2 tr(BV2BV2)]σ4
2

+ [ 4
a2 tr(AV1AV2)]σ2

1σ2
2 + [ 4

a2 tr(AV1A)]σ2
1σ2

e

+ [ 4
a2 tr(AV2A) + 4d2

a2b2 tr(BV2B)]σ2
2σ2

e

+ [ 2
a2 tr(A2) + 2d2

a2b2 tr(B2) + 2k2

a2b2c2 tr(C2)]σ4
e . (B.1)

(ii) The MSE of σ̂2
1,m1

MSE(σ̂2
1,m1)

= [2c2
1

a2 tr(AV1AV1) + (c1 − 1)2]σ4
1 + [4c2

1
a2 tr(AV1AV2) + 2(c1 − 1)r]σ2

1σ2
2

+ [2c2
1

a2 tr(AV2AV2) + 2d2c2
1d2

1
a2b2 tr(BV2BV2) + r2]σ4

2

+ [4c2
1

a2 tr(A2V1) + 2(c1 − 1)t]σ2
1σ2

e

+ [4c2
1

a2 tr(A2V2) + 4d2c2
1d2

1
a2b2 tr(B2V2) + 2rt]σ2

2σ2
e

+ [2c2
1

a2 tr(A2) + 2d2c2
1d2

1
a2b2 tr(B2) + 2k2c2

1d2
2

a2b2c2 tr(C2) + t2]σ4
e , (B.2)

where

r = c1d

a
− dc1d1

a
, t = c1

a
tr(A) − dc1d1

ab
tr(B) + c1kd2

ab
.
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The following two equations give the MSEs for the variance component
estimators obtained from partition II, i.e., σ̂2

1,u2 and σ̂2
1,m2 :

(iii) The MSE of σ̂2
1,u2

MSE(σ̂2
1,u2)

= [2tr(EV1EV1)
g2 ]σ4

1 + [4tr(EV1E)
g2 ]σ2

1σ2
e + [2tr(E2)

g2 + 2l2

g2c
]σ4

e (B.3)

where E = Px12 − Px2 , g = tr((Px12 − Px2)V1) and l = tr(Px12 − Px2)

(iv) The MSE of σ̂2
1,m2

MSE(σ̂2
1,m2)

= [2c2
2tr(EV1EV1)

g2 + (c2 − 1)2]σ4
1

+ [4c2
2tr(EV1E)

g2 + 2(c2 − 1)c2l

g
(1 − l

g
)]σ2

1σ2
e

+ [2c2
2tr(E2)

g2 + 2c2
2ε2

1l2

g2c
+ (c2l

g
(1 − l

g
))2]σ4

e (B.4)
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C

Example The Model n p q

1 Y = 18µ +
(

14 0
0 14

)
u1 +

 12 0
0 12
12 0
0 12

u2 + e. 8 2 2

2 Y = 18µ +
(

15 0
0 13

)
u1 +

 12 0
0 13
11 0
0 12

u2 + e. 8 2 2

3 Y = 18µ +
(

16 0
0 12

)
u1 +

 14 0
0 12
11 0
0 11

u2 + e. 8 2 2

4 Y = 121µ +

(
15 0 0
0 19 0
0 0 17

)
u1 +


12 0 0
0 13 0
0 11 0
0 0 18
14 0 0
0 13 0

u2 + e 21 3 3

5 Y = 130µ +

(
110 0 0
0 115 0
0 0 15

)
u1 +


15 0 0
0 15 0

110 0 0
0 15 0
0 12 0
0 0 13

u2 + e. 30 3 3

6 Y = 130µ +

 17 0 0 0
0 112 0 0
0 0 16 0
0 0 0 15

u1 +


14 0 0
0 0 13
0 110 0
0 0 12
12 0 0
0 14 0
15 0 0

u2 + e. 30 4 3
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D
The mean square error MSE of an estimator θ̂, denoted by MSE(θ̂), can be
defined as

MSE(θ̂) = D(θ̂) + (Bias(θ̂))2,

where D(·) denotes the variance. The bias of an estimator θ̂ of a parameter θ is
the difference between the expected value of θ̂ and θ, i.e., Bias(θ̂) = E(θ̂) − θ.

Let σ̂2 be the estimator of the true value σ2, the expectation and variance
of σ̂2 denoted as E(σ̂2) and D(σ̂2), respectively and a sample set of data defined
as σ̂2 = (σ̂2

1, σ̂2
2, · · · , σ̂2

N ). Consequently, the observed sample mean of σ̂2 is:

mean(σ̂2) = 1
N

∑
σ̂2

i .

Here, mean(σ̂2) replaces E(σ̂2). The observed sample variance denoted as
S2(σ̂2) is obtained:

S2(σ̂2) = 1
N − 1

∑
(σ̂2

i − mean(σ̂2))2,

and here S2(σ̂2) replaces D(σ̂2). Thus, the estimated bias of σ̂2 is

Bias(σ̂2) = mean(σ̂2) − σ2.

According to the definition, the mean square error of σ̂2 is

MSE(σ̂2) = S2(σ̂2) + [Bias(σ̂2)]2.

The observed negative probability used in this study is

P (σ̂2 < 0) = Q/N,

where Q is the number of negative estimates.

20


