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Abstract

A two-way linear mixed model consisting of three variance components,
02,02 and o2 is applied to evaluate the performance of the modified vari-
ance component estimator obtained from Henderson’s (1953) method 3,
developed by Al-Sarraj and von Rosen (2009). The estimator of interest
o2, is obtained and modified, from two different partitions, (partition
I and partition II), of the Henderson’s method 3 equations. By means
of simulation, we evaluate the performance of these variance component
estimators. The evaluation is in terms of mean square errors, estimated
biases and probability of obtaining negative estimates. In addition, the
comparison includes also variance component estimators obtained from
likelihood-based procedures, REML and ML. The effect of imbalance
and number of observations on mean square error is given. The modi-
fied Henderson’s method 3 variance component estimator obtained from
partition I is recommended for values of 03 /0? < 1.0. In terms of mean
square errors and probability of obtaining negative estimates, the mod-
ified Henderson’s method 3 has achieved improvement over the corre-
sponding non-modified ones. Further, unlike the likelihood-based esti-
mators, the modified variance component estimators are non-iterative,
and therefore computationally faster, with similar performance in terms
of mean square error as the ML estimator.

Keywords: Variance components, ML, REML, Henderson’s method 3

'E-mail address to the correspondence author: razaw.al-sarraj@slu.se



1 Introduction

Variance component estimation has a wide application in various fields of
science e.g. it is often used in population genetics and applied animal breeding.
There are several estimation methods found in the literature (see e.g. Searle,
Casella & McCulloch (1992)), bearing in mind each of those methods has its
own advantages and disadvantages.

The most commonly used methods are the ANOVA method, the Mini-
mum Quadratic Unbiased Estimator (MINQUE) and the Minimum Variance
Quadratic Unbiased Estimator (MIVQUE) by Rao (1971a, 1971b, 1972), the
likelihood-based procedures (the Maximum likelihood estimator (ML) and
the Restricted Maximum Likelihood Estimator (REML) by Hartley and Rao
(1967) and Patterson and Thompson (1971) respectively). The obtained ML
and REML estimators have good statistical properties. They are functions
of the sufficient statistics, are consistent, asymptotically normal, and further,
the asymptotic sampling dispersion matrix of the estimators is known. How-
ever, these likelihood-based procedures are computationally demanding, and
an extensive review of the procedures has been presented by Harville (1977).

Henderson (1953) presented the non-iterative ANOVA-like methods that
give rise to unbiased variance component estimators. The methods are known
as Henderson’s method 1, 2 and 3; each of which is suitable for a certain
situation. Method 3 is the most general one, it allows for fixed, random and
interaction effects in the model. However, the obtained estimators can assume
negative values; a fact that renders them inferior to the ones obtained by the
likelihood-based procedures. Therefore, an attempt was made to improve the
unbiased variance component estimator obtained from applying Henderson’s
method 3 in a two-way linear mixed model (see Al-Sarraj & von Rosen (2009)).
Further, the modified variance component estimator was shown to perform
better in terms of mean square error criteria under certain conditions.

Ronnegard et al (2009) tested the utility of the modified Henderson’s
method 3 estimator in a Quantitative Trait Loci (QTL) study as an alternative
method for the likelihood-based procedures commonly used in this particular
field.

The aim of the current study is to compare and evaluate the performance
of the modified estimators (obtained by Al-Sarraj and von Rosen (2009) from
two different decompositions/partitions of Henderson’s method 3) with the
non-modified variance component estimator. Further these estimators were
compared to ML and REML estimators. The comparison was performed in
terms of mean square error (MSE), estimated biases, and the probability of
getting negative variance estimates.



2 Material and methods

2.1 Two-way linear mixed model

The considered model is a two-way linear mixed model:
Y:X,8+Z1u1+Z2u2+e, (2.1)

where Y is an n x 1 vector of observations distributed as a multivariate normal
MVN (X3,V), X : n x m the design or incidence matrix of known elements,
B : mx1 a vector of unknown fixed effect parameters and e : n x 1 a vector rep-
resenting the within-subject variability or the measurement error distributed
as e ~ MV N(0,021), where I is the n x n identity matrix. The first random
effect of (2.1) uy is a p x 1 vector normally distributed u; ~ MV N(0,0%1),
whereas the second random effect is represented by us a ¢ x 1 normally dis-
tributed vector us ~ MV N(0,031). Further, Z; : n x p and Zy : n X q are
known incidence matrices, V = 03V; +03Va+ 021 is the dispersion matrix and
Vi = Z1Z] and Vo = Z5Z4 are known design matrices. The variance compo-
nents in (2.1) are 02, 03 and o2; the first two correspond to the first and second
random effect, whereas the third is the variance of the error component.

2.2 Modified Henderson’s method 3

Henderson’s method 3 was one of the three methods Henderson developed in
1953, which dealt with the deficiencies of Henderson method 1 and 2, for details
see Searle, Casella and McCulloch (1992). The modified version is based on
Henderson’s method 3 equations, but relaxes the condition of unbiasedness.
Henderson’s method 3 is applied on a two-way linear mixed model (2.1), where
two decompositions of the equations are studied referred to as partition I and
partition II.

In partition I, three variance components are included; o?, o3 and o2
whereas, only two variance components are included in partition II; o} and o2
where o3 is eliminated by an orthogonal projection. In both partitions, the
work was focused on o?.

For the two partitions, this variance component estimator was improved
by perturbing the standard unbiased estimator so that the obtained estimator
would have a mean square error that is less than the non-modified one, for
details see Al-Sarraj and von Rosen (2009), Kelly and Mathew (1994). The
variance component estimators resulting from partition I and II are denoted
8%71“ and 8iu2 respectively, whereas their corresponding modified estimators
are denoted 3%7m1 and aim respectively. All four variance component esti-

mators are given in Appendix A.



2.3 Measure of imbalance

In unbalanced data the number of observations at each level of the random
effect is different, and a measure is needed to quantify the imbalance. In (2.1),
the number of observation n; defines the structure of the data at different levels
of the random effects. Ahrens and Pincus (1981) proposed several measures
of imbalance which under certain transformations are identical, one of which

is
1

Um(n) mz(%)gﬂ (2‘2)
where n = >, n;, m = p (or q) and i = 1,---p (or 1,---¢). In unbalanced
data the value of vy,(n) is within the range L < v, (n) < 1; so the smaller
the v,,(n) value is the more imbalanced the data are. The maximum value of
vm(n) = 1 occurs only when the data are balanced. For a two-way linear mixed
model (2.1), vp(n) and vy(n) denote the imbalance for the design matrices Z;
and Zo respectively. Here, the following measure is suggested to calculate the
imbalance in the considered examples, given in Appendix C,

v(n) = 0.5v,(n) 4+ 0.5v4(n).

2.4 Monte Carlo comparisons and simulations

The variance component estimators resulting from applying the different meth-
ods of estimation are compared in the context of different patterns of data and
true values of the variance components. Swallow and Monahan (1984) illus-
trated that the subgroup means and subgroup sums of squares are sufficient
for the variance component estimators. This was exploited in our Monte Carlo
simulation by using a modified polar method (Marsglia and Bray, 1964) for
generating normal random variables. Six different examples given in Appendix
C which were also considered by Al-Sarraj and von Rosen (2009), are used.
Following subsection 2.3, the degree of imbalance was calculated for these six
examples, see Table 1.

The value of v(n) shows the following: Example 1 is a balanced case,
whereas, Examples 2 and 4 are almost balanced. The remaining Examples 3,
5 and 6 are more unbalanced than the others.

In the following subsections, we compare the different estimators based
on Henderson’s method with ML and REML. The MSE, estimated bias and
probability of getting negative estimates for these estimators are investigated
in five different case studies:



Table 1: The imbalance measure for each example

Example n p ¢ vp(n) wve(n) ov(n)
1 8 2 2 1 1 1
2 8 2 2 09412 0.9412 0.9412
3 8 2 2 0.8000 0.9412 0.8706
4 21 3 3 0.9439 0.9866 0.9653
) 30 3 3 0.8571 0.7937 0.8254
6 30 4 3 0.8858 0.8772 0.8815

Case 1: The impact of varying o3 for a given value of o7 on the MSE.
Case 2: The impact of varying o? for a given value of ¢ on the MSE.
Case 3: Probability of obtaining negative estimates.

Case 4: The choice of partition (I or IT) depending on the ratio o3 /o%.
Case 5: The influence of the number of observations on the MSE.

For each simulation 1000 replicates were used. For the ML and REML esti-
mates, the lmer() function in the Ime4 R package (Bates and Maechler, 2010)
was used.

2.4.1 Case 1: The impact of varying o3 for a given value of ¢} on
the MSE

The main idea behind modifying the variance component estimators for the
two considered partitions was to obtain an estimator that would perform bet-
ter in terms of MSE criteria. Thus, for partition I and II, the MSE(o{,,,)

should be less than MSE(67 ), likewise their modified corresponding esti-

1,u

mators MSE(67 ,,,) less than i\/ISE(G%mQ) and for this to be achieved there
are a range of values for 03. Therefore, we chose ten different values of
o3 = 0.01,0.05,0.1,0.15,0.25,0.5,0.75,1,1.5,2 for calculation of the MSEs
of the variance component estimators Gim, G 6%m1 and 57, that would
thereafter be compared. The true values for the other parameters, used in
the simulation, were p = 0, 07 = 0.1, 02> = 0.9. The equations used to es-
timate 0% ,,, 01y, O1m, and 01, are given in (A.1),(A.3),(A.2) and (A.4)
respectively. The observed MSEs of the variance component estimators were
calculated as in Appendix D and the MSEs of the variance component es-
timators obtained from the two considered partitions (I and II) is given in
Appendix B. For further details and calculations of the MSEs see (Al-Sarraj
& von Rosen, 2009).



2.4.2 Case 2: The impact of varying o? for a given value of ¢3 on
the MSE

As the MSEs of 57, and 67, depend among others on o7, in this analysis
we chose one value from the range of 03 < 0.1 based on Case 1 with 10 dif-
ferent values of o3 = 0.001,0.01,0.05,0.10,0.15, 0.20, 0.5, 1.0,2.0,5.0. For the
simulation, the true values of y = 0 and 02 = 0.9 were applied, and from the
range of o2, 0.05 was chosen. Moreover, the MSEs of the variance component
estimators 6%,1“7 8%7,”1, 8%&2 and Ef’mz were compared, and further the com-
parison included variance component estimators obtained by the commonly
used methods 8% vz, and 8%7 rer - Besides, for the ten different values of 0%,
the estimated biases for all the examples were calculated.

2.4.3 Case 3: Probability of obtaining negative estimates for the
two partitions

For all the six examples including both partitions (I and IT) and their modified
corresponding estimators, the probability of obtaining negative estimates was
determined, see Appendix D.

2.4.4 Case 4: The choice of partition (I or IT) based on the ratio

o3 /ot
Based on the results from Case 1 and Case 2, for MSE(&%M) and MSE(E%’ml)
to be smaller than MSE(&%M) and MSE(&%WQ), respectively, a value range

for 03 < 0.1 was recommended. However, since the true values of the variance
components may vary within a wide range, there was a need to extend o2 < 0.1
for wider application purposes and consequently the ratio o3 /07 was consid-
ered. Based on the same calculation mentioned above, the ratio 03/07 < 1
was applied and from which 03/07 = 0.8 was chosen; a ratio that could be
obtained from many different values of o5 and 7. For the simulation we ap-
plied the following variance components’ values a% = 0.8,4,12,24,40,80 and
0? =1,5,15,30,50,100. Hence, the range of 03 and o2 could cover many true
values in real experiments. For the other parameters in the model, the values
= 0 and 02 = 0.9 were applied. For Examples 2 and 5, the same above
mentioned ratio was tested and the MSEs of 3%7u17 aiuz, 8%7,711 and 3%m2 were
obtained.



2.4.5 Case 5: The influence of the number of observations on the
MSE

The main task here, was to see what impact n would have on the MSEs of
the different variance component estimators. For the simulation, o7 = 1,
03 = 0.05, 02 = 0.9 and p = 0 were used. The MSEs of ﬁ%m, 3%7% and 3%ML
were calculated. Example 5, being most unbalanced, was applied as the basic
experiment. Four different n = 30, 150,450,900 were used, and thereafter
MSEs were calculated for the different values of n.

3 Results

3.1 Case 1: The impact of varying o3 for a given value of o7
on the MSE

Example 1 is a balanced case and the MSEs of 7, and 6%#2 were therefore
equal (Table 2). This was also the case for 67,, and &7,,, (Table 3). Fur-
thermore, in Example 2, the MSE of 57, was similar to those of 8%77‘2 since
Example 2 is close to balanced. In Example 4, the MSE(&%M) was smaller
than MSE(c1,,,) when o3 was small. Meanwhile, when the value of o3 was
large the MSE increased dramatically. For Examples 3, 5 and 6, both MSE of
8%71“ and 3%7m1 showed a successively rising trend as o3 increased. Since the
MSEs of 3%7u2 and 3%7m2 are independent of o2 by definition, their observed
MSEs remained unchanged. The MSE of all four estimators benefited from
larger n as expected.

Moreover, for a fixed o = 0.1 and changes in 03, both G%M , and Eimz were
improved substantially in comparison to the non-modified variance component
estimators 3%# , and 8%#2 in terms of MSE.

In the last columns of Tables 2 and 3 the range of values of 03 is given
where the MSEs of 3%,1“ and G%MI were found to be less than the MSEs for
%,uz and 8f’m2, respectively. Based on the results from Table 2 and Table
3, partition I is recommended for o3 < 0.1 in all the unbalanced examples
considered.

o

3.2 Case 2: The impact of varying o7 for a given value of o3
on the MSE

The observed MSEs of G%M were lower than Eiw except in Example 1 and

Example 2 (Table 4). Partition I showed lower MSEs than partition II for
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0? > 0.01. Furthermore, the difference in MSEs between the modified and
non-modified estimators increased with the value of o%.

It was also observed that the MSEs of 6%’ amz Were smaller than 8%7 REML
for all the considered examples. In addition to that, the MSEs of both 3% ML
and Gf’m , were very close and lower than all the other estimators’ MSE. Hence,
Ei iz and 6’%m , can be recommended when MSE is concerned.

The estimated biases of Ef’m . 8%7m2 and 8%7 A, increased dramatically, and
the results were no longer appealing when o7 was large (Table 5). Whereas, the
biases for the two non-modified estimators (3%11 , and 8%7112) and 0% were
more robust and approximately equal to 0. Hence, when unbiasedness is the
main concern, the variance component estimators obtained from Henderson’s
method 3 and REML is recommended.

3.3 Case 3: Probability of obtaining negative estimates for the
two partitions

The probability of obtaining negative estimates in all of the examples was
similar for both &7, and 57, , and likewise for 57, and o7,,, (Table 6). It
was also observed that the probability of negativity concerning the estimators
of both partitions decreased with larger values of o7. Most importantly, the
modified estimators had smaller probability of negativity in comparison with

the non-modified ones.

3.4 Case 4: The choice of partition (I or II) depending on the
ratio o2/0?

In Example 2 which has a low n, the MSEs of 6’%ul were larger than the
ones for 3%,1@ apart from a few cases with small differences (Table 7). A
similar observation, was made for the MSEs of the modified estimators, i.e.,
MSE(5% ,,,) was less than MSE(5{,,,). On the other hand, in Example 5,
the MSEs of 57, and 3%7m1 were lower than the MSEs of 3%112 and 3%%2
respectively. These two examples show that partition I seems to perform better
for 02/0% < 1.0. We can conclude that if the MSE is the main interest, the
modified estimator 57, should be preferred over the other three considered

estimators o1, , 01, and 67 ..
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Table 7: The observed MSE for estimation of o7 based on ¢3/0? = 0.8, u = 0,
03 = 0.05 and o2 = 0.9 with N = 1000 simulations

03/07 =0.8

Ex est. 0.8,1 4.5 12,15 24,30 40,50 80,100
3%,u1 2.8979 57.3405 423.4799 995.3098  4847.170 19240.168

2 3%,u2 2.9417 56.0465 420.1413 1015.9780 4848.737 19415.408
3%)7,“ 0.7336 17.3185 145.6219 383.3311 1657.436  6583.363
3%,”2 0.7399 17.2168 145.4236 384.9611 1653.197 6612.680
8%,,“ 1.7133  34.8602 267.2678 1204.2242 3348.202 12375.354

5 8%,u2 1.7311 36.6264 274.2066 1221.0254 3351.043 13188.749
?riml 0.6093 13.5307 113.3753 475.6935  1356.286  5197.689
8%,m2 0.6408 14.9743 125.7473 520.3050  1447.766  5734.068

3.5 Case 5: The effect of the number of observations on the

MSE

The difference in MSE between the variance component estimators decreased
for large n (Figure 1). The MSEs of 67 ,,, were more sensitive for the changes
in n than 8%7m1 and ﬁiML. If n was large enough, then the MSEs of the
estimators were approximately equal and the unbiased estimators should be
preferred.

o—
o

o \

| —— Henderson IlI
Maximum Likelihood
-- Modified Henderson 1l

o

MSE

0 200 400 600 800

Number of observations (n)

Figure 1: Observed MSE for different n=30,150,450,900. The simulated variance compo-
nents were o5 = 0.05,07 = 1, 02 = 0.09. MSE calculated from 1000 simulation replicates.
Partition I was used for the Henderson III and modified Henderson III estimates.
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4 Conclusion

The main conclusion from our simulation study is that in terms of MSE and
probability of obtaining negative estimators, the modified estimators from the
two partitions perform better than their non-modified corresponding estima-
tors. However, when unbiasedness is the main concern, the (non-modified)
Henderson’s 3 estimators and the REML estimator are preferred. The simu-
lation results also give a guideline for when to choose partition I rather than
partition II. Further, the results show that when n is large and the MSE is
the main concern, G%MI can be preferred over the other considered estimators
ie., Giul, Eiw and E%MQ.

Regarding imbalance, 8im , is more robust and performs better than Gf’u .
Furthermore, if MSE is of interest, the 3% v and 3%,7711 are very close and
have lower MSE than all the other considered estimators. Moreover, for all
the considered examples the modified variance component estimators have in
general a lower MSE than their corresponding non-modified ones. Further,
the probability of obtaining negative estimates was smaller for the modified
variance component estimators than the non-modified ones.

Hence, our simulation study gives improved insight to the biasedness and
accuracy of modified Henderson’s method 3 for variance component estima-
tion. Besides giving insight to variance component estimators in general, our
results give guidelines for applied research (e.g. Ronnegard et al. 2009).
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Appendix

A Expressions for the reduction sum of squares
needed for Henderson’s method 3
To estimate the variance components of the model (2.1) we define the following

matrices [X], [X, Z1] and [X, Z1, Z3]. The corresponding projection matrices
are

P, = X(X'X)X
P = (X, 20)((X,21) (X, Z1))" (X, Z1),
Pfflz = (X, 21722)((X?Z17Z2)/(X’ ZlaZQ))_(X7ZhZQ)/7

where ~ represents the g-inverse AA~A = A. The first set of estimation
equation partition I is based on

R(u1/B)
R(uz/B,u1)
SSE

where R(-) denotes the reduction sum of squares, R(ui/8) = Y'(P,, — P,)Y,
R(uz/B,u1) = Y'(Py,, — Py,)Y and the residual sum of squares is denoted by
SSE = Y'(I — P,,,)Y, see Searle (1971). The obtained variance component
estimator from partition I is

A2 _ Y/(Prl — PI)Y _ t?"(le )VQY/( 12 Pﬂ?l)Y
Tl tr(Py, — Po)Vi tr(Py, — Po)Vitr(Pyy, — Pry)Va
Y'(I — P,
+ FY'T = Py )Y (A1)

tr(Pirl - )Vltr( r12 wl)VQtr(I P1'12)

The modified variance component estimator given by Al-Sarraj and von
Rosen (2009) is as below:

Y’(Pml — Pm)Y B tr(le - P )V2d1Y ( 1y — Pml)Y
t?“(P - x)vl t"”(P - )Vltr( Ti2 T xl)v2
Y'(I - P,.,)Y
kdy ( 12) ) (A2)
tr(le - )Vltr( T12 xl)VQtT(I P-'EIQ)

Fim =

_|_
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For the coefficients ¢, d; and da given in (A.2) we have the following values

1

1 = )
m[t?"(]jml — P;E)Vl(le — Px)‘/i] —+ 1

d 1

1 = )

m[tr(&u — Puy )Va(Pryy — Pry)Vo] +1
(tr( Py, —Px)V2)

d2 _ mdltr(]%m — le) — tT(le — PJ;)

k
[tr(Pz12*Pz1)V2 ) [W(I}sz) +1

where Vi = 217, Vo = ZsZ} and k = tr((Py, — Py)Va)tr(Py,, — Py,) —
tr(Py, — Py)tr((Py,, — Py, )V2). For details and calculations see Al-Sarraj and
von Rosen (2009). For the second set of estimation equations partition II we
need to define [X, Z5] and the corresponding projection matrix

Py, = (X, Z2)((X7 ZQ)/(X7 ZQ))i(Xv ZQ)/'

Partition II is based on the following set of equations

{ R(u1 /8, us)
SSE

where R(u1/8,u3) = Y'(Pyy, — Pr,)Y and SSE = Y/(I — P,,,)Y. The obtained
variance component estimator from partition II is

3% vy = tT(I — P$12)Y/<PSC12 — PCCQ)Y — tT(PCCu — P:B2)Y/(I — P:B12)Y
’ t?“(wa - Pm)VQtT(I - P11712)
_ Y/(PHHQ _PIQ)Y _ tT(PIm _P232)Y/<I_P2712)Y (A 3)
tT(Prm _P272)V1 tT(lez _PCEQ)VItT(I_Pwm). .
The modified variance component estimator of partition II is:
a%m _ oY (Pyy, — Pp,)Y B coe1tr(Pryy — Ppy)Y'(I — Ppp,)Y (A4)
e tr(PfEIQ - sz)vl t?”(lez - sz)VltT(I - P-'E12)

Now for the coefficients that are involved in partition I1, i.e., c3 and €1 given
in (A.4) we refer to Kelly and Mathew (1994). However, we have calculated
the values such that they would be appropriate for the second set of estimation
equations partition II,

1
[tT(qu - sz)vl(me - PIQ)‘/]-] + 1

Cy = 2
[tr(PwlZ—PM)Vl]2
1

g1 = 2

wi=py T 1
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B

For simplicity and before we write the mean square error equations for the

variance component estimators obtained in (A.1), (A.2), (A.3) and (A.4) we
define the following

A:(P$1_P:c>> B:(Pml2_P$1>v C= (I leg)
0= tr(Pyy — POVi, b=tr(Poy — Pu)Va, c=tr(I - Puyy),
d=tr(Py, — Py)Va, e=tr(Py, — Py), [=tr(Py, —Py).
The MSEs for the non-modified and modified variance component estimators,
ie., 6%1“ and 8%,777,1 respectively, obtained from partition I are as follows:

(i) The MSE of 57,

MSE(O’l u1)
2 4 2 2
= [Str(AViAV)]o + [5tr(AV2AV) + 55 tr(BVaBV3)]od

4 4

+ [ﬁtT(AVlAVz)]UfJ% + [ tr(AV1A)]oio?
4 4d2

+gtr(AVeA) + 5 tr(BVaB)]o2o?
2 2d? 2k?

+ [ S5tr(A%) + 5tr(B?) + o tr(CY)]or. (B.1)

(ii) The MSE of 57,

MSE(Jl m1>

2c2 4¢2
= [ tr(AVIAV) + (e1 = 1)%Jo + [—3r(AVIAV:) + 2(cr — D)r]ofos

202 2232 -
+ [?tT(AVQA‘/Q) + 3?2 tr(BVoBVa) + 1r4|og
40% 2 2 2
+ [ytr(A Vi) + 2(c1 — 1)t]ojo?
4¢? 4d?c2d?
+ [a—;tr(AQVQ) + LLtr(B*V,) + 2rt]o3o?
2c2 2d%c3d? 2k2c2d3
- [a—;tr(AQ) + ngtr(BQ) + e F2tr(C?) + o) (B.2)
where
Cld d01d1 C1 dcldl Clkdg
== _ t=—tr(A) — tr(B .
" a a ’ a r(4) ab r(B) + ab
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The following two equations give the MSEs for the variance component
estimators obtained from partition II, i.e., 8%7% and 8%,7}12:

(iii) The MSE of 57,

MSE(57 ,,)
2
_ [QtT(E;gEVﬂ]O.il n [4t7"(1952V1E)]0%0.2 + [% + %"C]Ug (B.3)

where E = P,,, — Py,, g = tr((Py,, — Py,)V1) and | = tr(Pyy, — Pa,)

(iv) The MSE of 57 ,,,

MSE(5%,,,)
202tr(EVi EV;y
= PEHEAT (e, - 10!

4ctr(EVLE ol l

+ {# +2(cs — 1)%(1 _ 5)]0%03
2c3tr(E?)  2c2e?  col I 97 4

+ 21 - 2)3e! B.4
[ 72 e (g( g))] (B.4)

18



The Model

Example n
12 0
14 0 0 12 8
1 Y=18M+< 0 14>u1+ 1, o |uzte
0 12
19 0
15 0 0 13 8
2 Y:lgu—s—( 0 13)u1+ 1, 0 u2 +e.
0 12
14 O
1g 0 0 12 3
3 Y:18M+( 5 12)ul+ Do fwete
0 13
12 0 0
0 13 O
1s O 0 0 1, 0
4 Y =1lo1p+ 0 19 O uy + 0 0 1s us + e 21
0 0 17 1, 0 0
0 13 O
15 0 0
0 15 0
110 0 0 o 0 0
5 Y = 1300 + 0 115 O ul + 0 15 0 ug + e. 30
0 0 15 0 1 0
0 0 13
14 0
0 13
17 0 0 0 0 110 0
6 Y = l1z0p + O liz 00 o 1o |uz+e 30
0 0 l¢ O 1o 0
0 0 0 15 0 14 0
15 0
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D

The mean square error MSE of an estimator é, denoted by MSE(@), can be
defined as
MSE() = D(0) + (Bias(f))?,

where D(-) denotes the variance. The bias of an estimator g of a parameter 6 is
the difference between the expected value of § and 0, i.e., Bias(§) = E(6) —#.
Let 62 be the estimator of the true value o2, the expectation and variance

of 5% denoted as E(6?) and D(62), respectively and a sample set of data defined

as 62 = (62,63,--+,6%). Consequently, the observed sample mean of 62 is:

1
mean(6?) = N Z 52,

Here, mean(62) replaces E(62). The observed sample variance denoted as
S%(52) is obtained:

52(6%) = 7 367 -

N1 mean(6?))?,

and here S2(62) replaces D(62). Thus, the estimated bias of 62 is
Bias(6%) = mean(6?) — o*.
According to the definition, the mean square error of 2 is
MSE(6%) = S%(6%) + [Bias(6*)]%.
The observed negative probability used in this study is

P(6* < 0) = Q/N,

where @ is the number of negative estimates.
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