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Abstract

This paper is devoted to the development of noise reduction methods for
spatial-temporal signals with applications in magnetic resonance imag-
ing. A noise reduction algorithm for 4D MRI signals, based on the
wavelet transform and Gaussian scale mixtures, is proposed here. Sim-
ulation study shows that the new method is capable to improve the
performance of noise reduction in higher dimensions.
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1 Introduction

Wavelet methods have become a widely spread tools in signal and image pro-
cessing tasks [18]. Wavelet based noise reduction methods are often called
wavelet shrinkage methods and was introduced by Donoho and Johnstone [7],
Donoho et al. [8], and Bruce and Gao [3]. The main idea of a shrinkage
method is to transform the data by using a type of wavelet transform, remove
noise from the wavelet coefficients by shrinking them, and then reconstruct a
denoised signal or image by applying the inverse wavelet transform. Normal
images can be sparsely represented in the wavelet domain with a few large
coefficients, while the noise (often assumed white) is represented with many
small coefficients. By shrinking the small coefficients more than the larger
coefficients, the method is able to reduce noise.

How to apply the shrinkage procedure has gained much interest since the
technique was introduced. Many different shrinkage functions, adjusted to
different types of noise, have been developed. Improvements of the method
is now primarily achieved by using redundant transform domains (such as
undecimated wavelets, ridgelets, curvelets, see e.g. [5, 12, 18, 30]) and/or
by exploiting the inter-coefficient dependencies of the wavelet transform (e.g.
[22, 23]).

Wavelet denoising is primarily used for one and two-dimensional data.
When the data has more than two dimensions the noise reduction is often per-
formed on two dimensional slices of the data. Since many of the state of the
art methods use undecimated wavelet transforms and/or the inter-coefficient
dependencies, more information can be obtained by performing the noise re-
duction on the whole data set (three or higher dimensional) simultaneously.
This could be done at the expense of more things to estimate and higher
demands on the computer power.

There are special demands in noise reduction of MRI. While normal images
are judged by their visual appearance, introducing artifacts and smoothing
are not accepted in MRI images. Artifacts introduced by a noise reduction
algorithm could be misinterpreted as clinical findings. A review of wavelet
denoising in MRI was provided by Pizurica et al. [21].

The main objective of this paper is to introduce a wavelet shrinkage method
for four dimensional MRI data, which implies 3-dimensional MRI images plus
the time dimension. We will evaluate the performance using this wavelet based
noise reduction for DCE-MRI, through simulation studies.



2 Methods

2.1 Statistical image modelling

The goal of image denoising and restoration is to relieve human observers
from the task of distinguishing various artifacts from the underlying image,
by reconstructing a plausible estimate of the original image form the distorted
or noisy observation. A prior probability model for both the noise and the
uncorrupted images is of central importance for this application.

Due to the high dimensionality of the signal, statistical modelling of natural
images is a challenging task. Two basic assumptions are commonly made
in order to reduce dimensionality: locality and homogeneity. The locality
indicates that the probability structure is defined locally, typically by a Markov
assumption. That is, the probability density of a pixel, conditioned on a set
of neighbours, is independent of the pixels beyond the neighbourhood. The
spatial homogeneity implies that the distribution of values in a neighbourhood
is the same for all such neighbourhoods, regardless of absolute spatial position.
Markov random field (MRF) model is commonly simplified by assuming the
distributions are Gaussian. This last assumption, however, is problematic for
image modelling, where the complexity of local structures is not well described
by the Gaussian densities, especially when the signal-to-noise ratio is lower.

The power of statistical image models can be substantially improved by
transforming the signal from the original domain to a new representation.
Over the past decades, decomposing images with a set of multiscale band-
pass oriented filters (such as wavelet decomposition) has become standard to
image processing. It is effective at decoupling the high-order statistical fea-
tures of natural images. It has been shown that the marginal distributions of
wavelet coefficients are highly kurtotic and can be modelled by heavy-tailed
distributions. A variety of parametric models has been proposed, including the
generalised Laplacian [10, 13, 27], the Bessel K [28], the multivariate Student’s
t-distribution [31], the a-stable family [20], and the Cauchy distribution [24].
Within the subbands of a representation, the kurtotic behaviours of coefficients
allow one to remove noise using a point nonlinearity. Such approaches have
become quite popular in image denoising, as described in the next subsection.

In addition to the non-Gaussian marginal behaviour, the responses of band-
pass filters exhibit important non-Gaussian joint statistical behaviour. In
particular, even when they are second-order decorrelated, the coefficients of
similar position, orientation and scale are highly correlated [26, 36]. The de-
pendencies between wavelet coefficients have been investigated, and it is found
[4, 26, 34] that large amplitude coefficients are sparsely distributed through-



out the image and tend to occur in clusters and the standard deviation of a
coefficient scales roughly linearly with the amplitude of nearby coefficients.
Vannucci and Corradi [32, 33] studied the covariance structure of wavelet co-
efficients within and across scales and suggested a Bayesian approach to the
wavelet shrinkage. Furthermore, the dependency between local coefficients
and the associated marginal behaviours can be modelled using a random field
with a spatially fluctuating variance. A particularly useful example arises from
the product of a Gaussian vector and a hidden scalar multiplier, known as a
Gaussian scale mizture (GSM) [1]. GSM distributions represent an important
family of the elliptically symmetric distributions, which are those that can be
defined as functions of a quadratic norm of the random vector. Several studies
have assumed that the local variance is governed by a continuous multiplier
variable [16, 19, 34, 35]. This model can capture the strongly leptokurtotic
behaviour of the marginal densities of natural image wavelet coefficients, as
well as the correlation in their local amplitudes.

2.2 Wavelet domain denoising

For two-dimensional data such as MRI images, the 2-D discrete wavelet trans-
form (DWT) [18] translates the image content into an approximation subband
and a set of detail subbands at different orientations and resolution scales.
Typically, the bandpass content at each scale is divided into three orientations
subbands characterised by horizontal, vertical and diagonal directions. The
approximation subband consists of the scaling coefficients and the detail sub-
bands are composed of wavelet coefficients. Here we consider a undecimated
wavelet transform [18] where the number of the wavelet coefficients is equal
at each scale to the original size.

There are several properties of the wavelet transform which make this
representation attractive for denoising, for instance:

e multiresolution — image details of different sizes are analysed at the ap-
propriate resolution scales

e sparsity — the majority of the wavelet coefficients are small in magnitude
e edge detection — large wavelet coefficients coincide with image edges

e edge clustering — the edge coefficients within each subband tend to form
spatially connected clusters

e edge evolution across scales — the coefficients that represent image edges
tend to persist across the scales.



Wavelets have been used for denoising in many medical imaging appli-
cations, see [21] and the references therein. In general a wavelet shrinkage
method compares empirical wavelet coefficients with some threshold and sets
them towards zero if their magnitudes are less than the threshold value. The
threshold acts like an oracle, which distinguishes between significant and in-
significant wavelet coefficients. The coefficients at coarsest scale (the scal-
ing coefficients) are typically left intact, while coefficients at all other scales
(wavelet coefficients) are thresholded via wavelet shrinkage, the idea of which
is to heavily suppress those coefficients that represent noise and to retain the
coefficients that are more likely to represent the actual signal or image dis-
continuities. For any shrinkage scheme to be effective, an essential property
is that the magnitude of the signal should be larger than that of existing
noise. The shrinkage operator is typically a piecewise linear and monotoni-
cally nondecreasing function. Thus, in practice, the shrinkage operator will
not introduce artifact.

Multiscale representations provide a useful tool for representing the struc-
tures of signals/images. The widely used orthonormal or biorthogonal wavelet
transform leads to successful implementation in image compression. But the
results are far from optimal for other applications such as denoising and detec-
tion. This is mainly due to that the DWT is critically sampled (the number
of coefficients is equal to the number of image pixels) and therefore the loss of
the translation-invariance property in the DWT, leading to disturbing visual
artifacts (such as aliasing or ringing). A widely followed solution to this prob-
lem is to use basis functions designed for orthogonal or biorthogonal systems,
but to reduce or eliminate the decimation of the subbands [2, 6, 9, 12, 25].

Once the constraint of critical sampling has been dropped, however, there
is no need to limit oneself to these basis functions. Significant improvement
comes from the use of representations with a higher degree of redundancy, as
well as increased selectivity in orientation [5, 23, 29].

Here we are going to use the undecimated wavelet transform for represent-
ing the four-dimensional MRI data. Figure 1 presents an illustrative scheme
of such a decomposition together with the wavelet shrinkage.

The method developed by Portilla et al. [23] is still one of the best perform-
ing noise reduction methods for MRI data. It uses scale mixture of Gaussians
as a model for the wavelet coefficients.

2.3 Gaussian Scale Mixtures

The GSM model has been used successfully to describe the statistics of local
clusters of multiscale subband coefficients, which can include spatial neigh-
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Figure 1: Illustration of 4D undecimated wavelet transform and shrinkage

bours as well as coefficients in adjacent scale and orientation subbands (e.g.
[11, 23, 35]). By definition, a GSM density is an infinite mixture of zero-mean
Gaussian variables with covariances related by multiplicative scaling. It can
emulate many of the non-Gaussian statistical behaviours observed in neigh-
bours of subband coefficients. In addition, the underlying Gaussian structure
leads to relatively simple parameter learning and inference procedures.

A GSM random vector x is defined as the product of a zero-mean Gaussian
vector u and an independent positive scalar variable z:

x Lz u, (1)

where x,u € RY, z € RT independent of x, and N is the dimensionality of
x and u. In our case this dimensionality is the size of the neighbourhood of
coefficients clustered around the reference coefficients. In general, the neigh-
bourhood may include coefficients from other subbands at nearby scales and
orientations. The density of a GSM vector x is given as

px) = [ pxl)pa()d @

Ty—1
/; exp{—xzix}pz(z)dz.
V @rz)N |3 2z
It is determined by the covariance matrix > of u and the mixing density
p2(z). The conditions under which a random vector may be represented by a
GSM have been studied [1]. As a family of probability distributions, GSM in-
cludes many common kurtotic distributions, such as a-stable family (including



Cauchy distribution), the generalised Gaussian family, and the symmetrised
Gamma family. For instance, if z follows an inverse Gamma distribution,
the resulting GSM density reduces to a multivariate Student’s ¢-distribution
[1, 37]. As theoretical properties of the GSM family, it includes that GSM
densities are symmetric about zero and Gaussian when conditioned on z, and
they have leptokurtic marginal densities.

2.4 Model wavelet coefficients by GSM

By using the wavelet transform, we decompose the image into pyramid sub-
bands at different scales and orientations. Denote by x5°(n,m) the wavelet
coefficient at scale s, orientation o, spatial position (2°n,2%m). Denote also by
x*°(n, m) a neighbourhood of coefficients clustered around this reference coef-
ficient 23°(n, m). For notational simplicity, we drop hereafter the superscripts
s,0 and indices (n,m). We assume that this neighbourhood x (of dimension
N) is characterised by a GSM model as in (1). Assume also that the image
is corrupted by independent additive white Gaussian noise. Thus a vector
corresponding to a neighbourhood of N observed coefficients of the pyramid
representation can be modelled by the GSM ([17, 23]):

y=Xx+€e=+z u+e, (3)

where y is a neighbourhood of N observed wavelet coefficients and € zero-mean
Gaussian. Note that based on the assumptions the three random components
on the righthand side of (3) are mutually independent.

Both u and € are zero mean Gaussian with covariance matrices X, and e,
respectively. Hence, the conditional distribution of the observed neighbour-
hood vector y given z is also a zero-mean Gaussian, with covariance matrix

E z — Zzu + EE, (4)
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and density
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The neighbourhood noise covariance ¢ can be estimated separately from
some regions where signals are (almost) not existing. It can also be ob-
tained, as pointed in [23], by decomposing a delta function in two dimension
0+/DyDyé(n, m) into pyramid subbands, where (D, Dy) is the image dimen-
sion. Similar decomposition can be done in four dimension. This delta signal



has the same power spectrum as the noise, but it is free from random fluctua-
tions. Elements of ¥ ¢ may then be computed directly as sample covariances.
This procedure is easily generalised for non-white noise, by replacing the delta
function with the inverse Fourier transform of the square root of the noise
power spectral density. Note that the entire procedure may be performed
off-line, as it is signal-independent.

Taking expectation over z on (4) it follows that

Yy = E[z]Ey + Xe. (6)
By setting E[z] = 1 without loss of generality, we obtain
Sy = Xy — De. (7)

Thus, given the noise covariance Y¢, the signal covariance ¥, can be computed
from the observation covariance Xy according (7).

In order to estimate the center coefficient z. from the observed noisy neigh-
bourhood y, the Bayes least squares estimator (BLSE), which minimises the
expected square error, can be applied. BLSE is the conditional mean of z.
given y [15]:

Elzcly] = / zep(aely)dae
[ [ wlac,2ly)dzd.
= [ [ awtady p(ely)dzde.
— [ by Blacly. 1d ®

under the assumption of uniform convergence in order to exchange the order
of integration. According to (8), this BLS estimator can be computed by the
weighted average of the Bayes least squares estimate of x. when conditioned
on z, with weights of the posterior density p(z|y). The detailed treatment of
each component is referred to [23].

Furthermore, as for the prior density p,(z) of the multiplier, the commonly
used Jeffreys’ prior is chosen here. This noninformative prior distribution on
the parameter space is proportional to the square root of the determinant of
the Fisher information. It was suggested by Jeffreys [14], which tries (in the
spirit of invariance) to treat all parameter values equitably. The key feature
is that it is invariant under reparameterisation of the parameter vector, which
makes it of special interest for use with scale parameters.



2.5 Denoising algorithm

Based on the methodologies described in the previous subsections, we have
the denoising algorithm:

1. Decompose the image into subbands (Fig. 1)
2. For each subband (except the lowpass residual):
e Compute neighbourhood noise covariance e from the image-
domain noise covariance as discussed in Subsection 2.4
e Estimate noisy neighbourhood covariance ¥y by observations
e Estimate ¥, from X¢ and Xy using (7)
e For each neighbourhood, compute E[z.|y] using (8)

3. Reconstruct the denoised image from the processed subbands and the
lowpass residual

3 Simulation study

For evaluating the performance of our wavelet-based noise reduction method
for 4D signals, we have conducted a simulation study. The data were gener-
ated from the real DCE-MRI signals and each contaminated with synthesised
additive Gaussian white noise at five different variances which providing five
different signal-to-noise ratios.

3.1 Setups: Data generation

a) Fitting a parametric model to a real DCE-MRI data (Fig. 2)

b) The estimated parameters were assumed to be true and new data was
created with that spatial distribution of parameters

c) Gaussian noise with five different SNR levels was added to the “true”
signal obtained from a)-b)

d) Restrict the data to the tumour region (64 x 56 x 10 x 56) with some
margins for avoiding the edge effect

Based on the data that we generated, we performed our noise reduction
algorithm on the whole 4D data set as well as 3D slices of the data.



3.2

1.

Figure 2: An anatomic brain image

Setups: Denoising

Analysis was performed in MatLab on the HPC2N clusterja
href="http://www.hpc2n.umu.se/”; HPC2N cluster;j/a;,

. Noise reduction was performed on the whole data set (4D), as well as

3D slices of the data

The proposed algorithm for 4D wavelet transform: non-decimated,
Daubechies “db4”, 2 scales

The proposed algorithm for noise reduction in 4D using GSM

Results were evaluated on noise reduction using RMSE and compared
with smoothing

4 Results and conclusions

The simulation results (Fig. 3) show that our new algorithm outperforms the
common smoothing technique. It improves substantially the noise reduction
at every tested noise levels, on both 3D and 4D signals. Furthermore, it has
also shown that one can gain more by utilising the full 4D signals.

One drawback of this denoising algorithm is the computational time when
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Figure 3: RMSE comparison between wavelet shrinkage and moving average
for both 3D and 4D signals at different SNR levels

the dimension is increasing. This is partly solved by using the HPC2N clusters
at Umed University. Next step? One would think the following topics:

Different wavelets for spatial dimension and time series
New method based on Rician noise when the SNR is low
Maximum likelihood estimator for noise variance

Method for estimating a prior for the multiplier by maximising the joint
likelihood

Error propagation in DCE-MRI for investigating how the noise reduction
will affect the uncertainty in estimation of parameters presented in the
physiological models
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