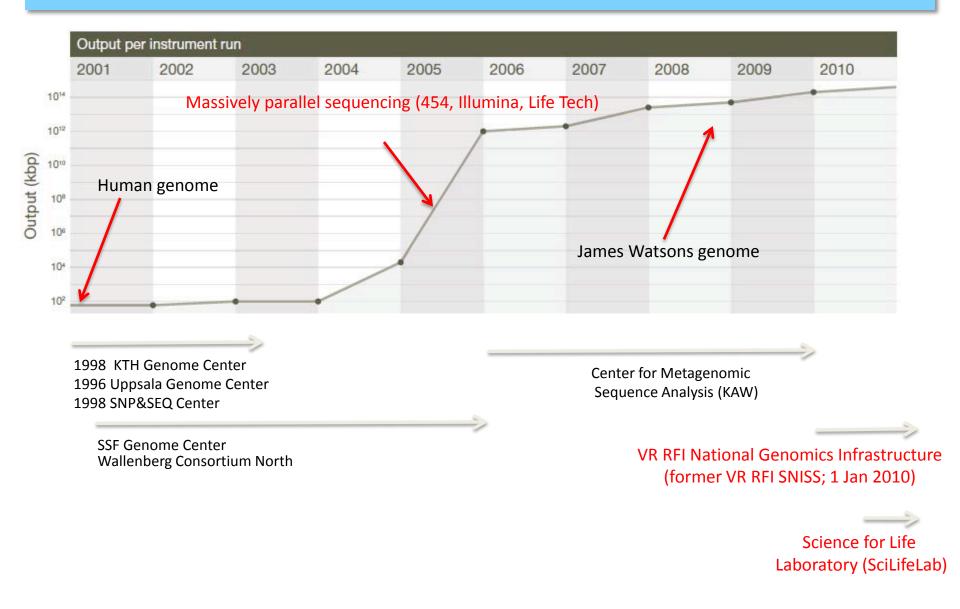


NGI, SciLife, NGS, barcoding and some other stuff


Olga Vinnere Pettersson, PhD National Genomics Infrastructure hosted by ScilifeLab, Uppsala Node (UGC)

Ouline

- SciLifeLab & National Genomics Infrastructure (NGI) structure, mission and services
- Next Generation Sequencing main technologies
- Sample prep, DNA libraries and barcoding possiblities
- Bioinformatics support at SciLifeLab
- Answers to pre-asked questions

SciLifeLab & National Genomics Infrastructure (NGI) – structure, mission and services

Background – Massively Parallel DNA Sequencing

SciLifeLab

TECHNOLOGIES & SERVICES \checkmark

RESEARCH ★ EDUCATION ★

COLLABORATION V

Find more information and search for what you need on the page for Technologies & Services

What is the difference between national and regional facilities?

National facilities

SciLifeLab

Affinity Proteomics

Biobank Profiling Cell Profiling Fluorescence Tissue Profiling PLA Proteomics Protein and Peptide Arrays Tissue Profiling

Bioimaging

Advanced Light Microscopy Fluorescence Correlation Spectroscopy

Bioinformatics

Bioinformatics Compute and Storage (UPPNEX) Bioinformatics Long-term Support (WABI) Bioinformatics Short-term Support and Infrastructure (BILS)

Chemical Biology Consortium Sweden

Laboratories for Chemical Biology Umeå (LCBU) The Laboratories for Chemical Biology at Karolinska Institutet (LCBKI) Uppsala Drug Optimization and Pharmaceutical Profiling (UDOPP)

Clinical Diagnostics

Clinical Biomarkers Clinical Genomics Clinical Sequencing

Q Search for Technologies & Services

Drug Discovery and Development

ADME (Absorption Distribution, Metabolism Excretion) of Therapeutics (UDOPP)

Biochemical and Cellular Screening Biophysical Screening and Characterization

Human Antibody Therapeutics In Vitro and Systems Pharmacology Medicinal Chemistry – Hit2Lead

Medicinal Chemistry – Lead Identification Protein Expression and Characterization

Functional Genomics

Karolinska High Throughput Center (KHTC)

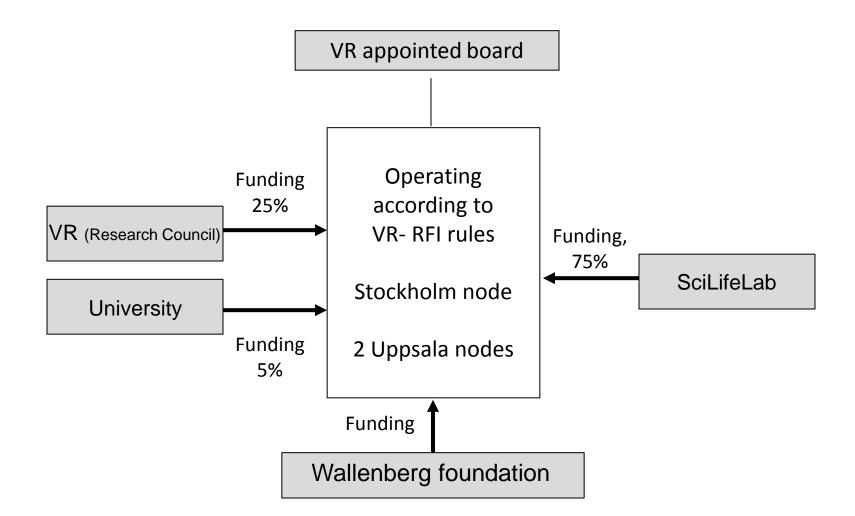
National Genomics Infrastructure

NGI Stockholm (Genomics Applications) NGI Stockholm (Genomics Production) NGI Uppsala (SNP&SEQ Technology Platform) NGI Uppsala (Uppsala Genome Center)

Structural Biology

Protein Science Facility

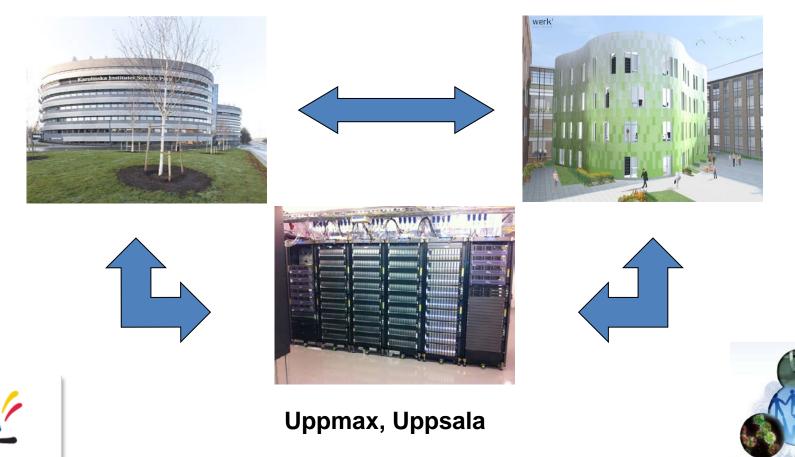
National Genomics Infrastructure - Goals


Criteria for infrastructures (VR RFI guidelines):

- Being of broad national interest
- Provide essential opportunities for world-leading research
- Can be used by several research groups/users on highly qualified research projects
- Be so comprehensive that individual groups cannot run them independently
- Have a long-term plan for scientific aims, funding and utilisation

• Be openly and easily available to researchers and have a plan for how availability can be improved (applies both to use of the infrastructure, access to data collected and the representation of results)

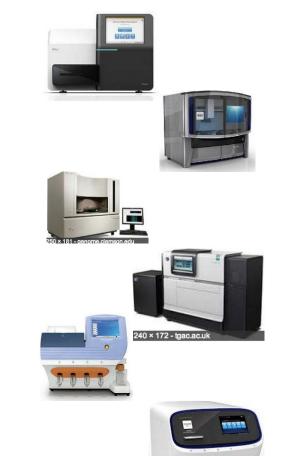
Joint organisational structure


Old Name: Swedish National Infrastructure for large-Scale Seq, SNISS New name: National Genomics Infrastructure (1 January, 2013)

National Genomics Infrastructure

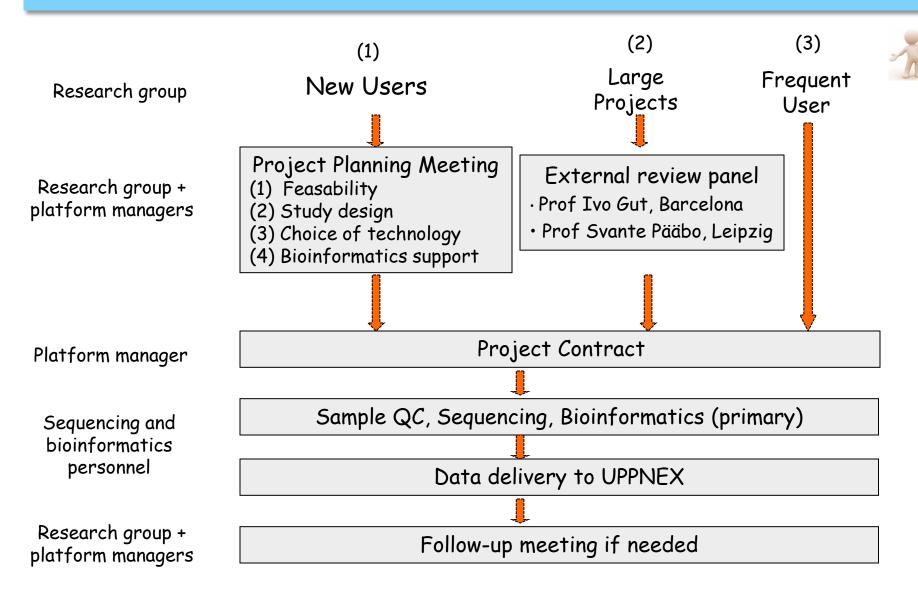
SciLifeLab, Stockholm

SciLifeLab, Uppsala



Vetenskapsrådet

NGI Equipment



Illumina HiSeq 2000/2500		17
Illumina Xten		10
Illumina MiSeq		3
Life Technologies SOLiD 5500wildfire		1
Life Technologies Ion Torrent		2
Life Technologies Ion Proton	6	
Life Technologies Sanger ABI3730		2
Pacific Biosciences RSII		2
Argus Whole Genome Mapping System		1

One of 5 best-equipped NGS sites in Europe

Project handling process

Point of entrance: https://portal.scilifelab.se/genomics/

National Genomics Infrastructure

 • Output
 This is put to fixed a fixed is basis to fixed a fixed as a fixed on the fixed on t

NGI Project coordinators meet every second day via Skype

Ulrika Liljedahl SNP&SEQ Uppsala node

Mattias Ormestad Stockholm Node

Olga Vinnere Pettersson UGC Uppsala Node

Project distribution is based on:

- 1. Wish of PI
- 2. Type of sequencing technology
- 3. Type of application
- 4. Queue at technology platforms

Project is then assigned to a certain node and a coordinator contacts the PI

Project meeting

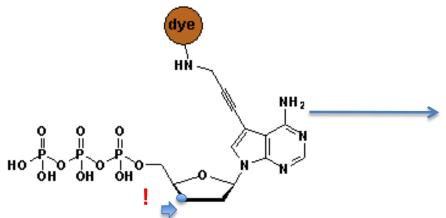
What we can help you with:

- Design your experiment based on the scientific question.
- Chose the best suited application for your project.
- Find the most optimal sequencing setup.
- Answer all questions about our technologies and applications, as well as bioinformatics.

 In special cases, we can give extra-support with bioinformatics analysis – development of novel methods and applications

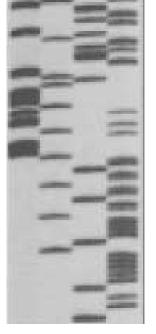
Next Generation Sequencing – main technologies

Once upon a time...


Fredrik Sanger and Alan Coulson
 Chain Termination Sequencing (1977)
 Nobel prize 1980

Principle:

SYNTHESIS of DNA is randomly **TERMINATED** at different points


Separation of fragments that are 1 nucleotide different in size

Sanger's sequencing

Lack of OH-group at 3' position of deoxyribose

P³² labelled ddNTPs

DNA template 3'- TAAATGATTCC-5' -> 3' 5' A Primer anneals Extension produces a series of ddNTP terminated products each one base different in length T TTAC TAAGG ATT 270 ATTTA ATTTAC Each ddNTP is labeled with a different color ATTTAC fluorescent dye ATTTAC Sequence is read by ATTTACTAA noting peak color in electropherogram ATTTACTAAG (possessing single ATTTACTAAGG base resolution)

Fluorescent dye terminators

Max fragment length - 750 bp

Sequencing genomes using **Sanger'**s method

- Extract & purify genomic DNA
- Fragmentation
- Make a clone library
- Sequence clones
- Align sequencies (-> contigs -> scaffolds)
- Close the gaps
- Cost/Mb=1000 \$, and it takes TIME

NGS technologies

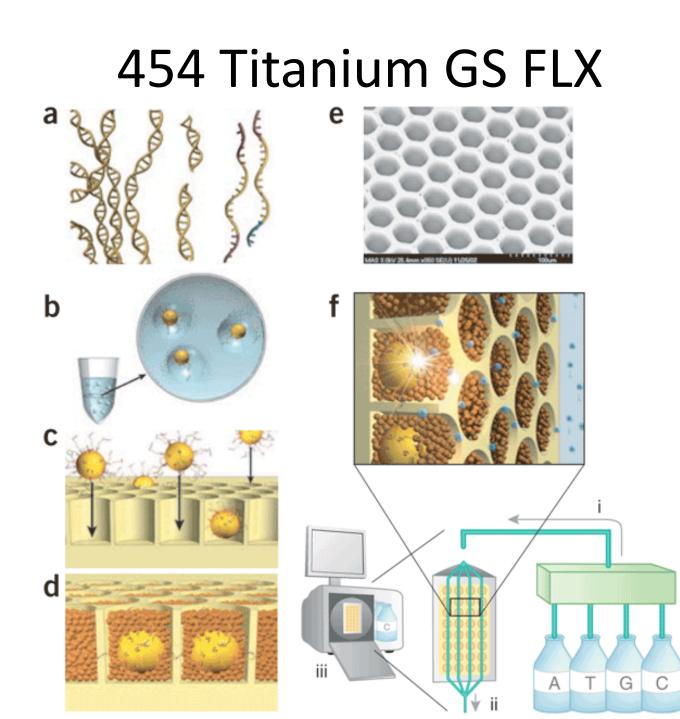
Company	Platform	Amplification	Sequencing method
Roche	454**	emPCR	Pyrosequencing
Illumina	HiSeq MiSeq	Bridge PCR	Synthesis
LifeTech	SOLiD**	emPCR/ Wildfire	Ligation
LifeTech	Ion Torrent Ion Proton	emPCR	Synthesis (pH)
Pacific Bioscience	RSII	None	Synthesis
Complete genomics	Nanoballs	None	Ligation
Oxford Nanopore*	GridION	None	Flow

RIP technologies: Helicos, Polonator, etc.

In development: Tunneling currents, nanopores, etc.

Differences between platforms

- Technology: chemistry + signal detection
- Run times vary from hours to days
- Production range from Mb to Gb
- Read length from <100 bp to > 40 Kbp
- Accuracy per base from 0.1% to 15%
- Cost per base varies

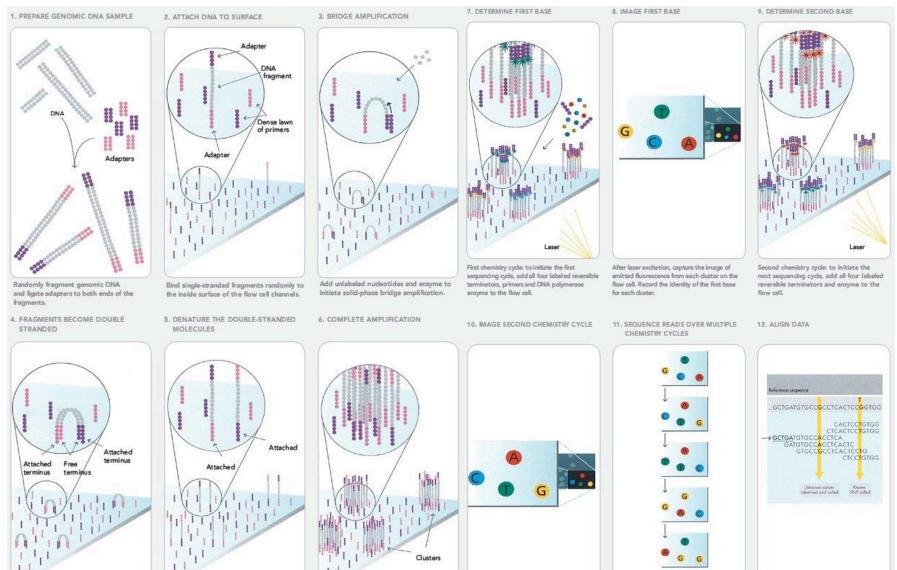

Roche

Instrument	Yield and run time	Read Length	Error rate	Error type
454 FLX+	0.9 GB, 20 hrs	700	1%	Indels
454 FLX Titanium	0.5 GB, 10 hrs	450	1%	Indels
454 FLX Jr	0.050 GB, 10 hrs	400	1%	Indels

Main applications:

- Microbial genomics and metagenomics
- Targeted resequencing

Illumina


Instrument	Yield and run time	Read Length (bp)	Comment
HiSeq2500, high output	Up to 1.0 Tbases (6 days) or <i>Up to 120 Gbases</i> <i>(40-70h)</i>	2x50 2x125 2x100 2x250	A lot of data
HiSeq X Ten	Up to 1.6 Tbases (3 days)	2x150	Human genomes
MiSeq	540 Mb – 15 Gbases (4 – 48 hours)	2x75 to 2x300	Low yield but fast

Main applications

- Whole genome, exome and targeted reseq
- Transcriptome analyses
- Methylome and ChiPSeq
- Rapid targeted resequencing (MiSeq)
- Human genome seq (Xten)

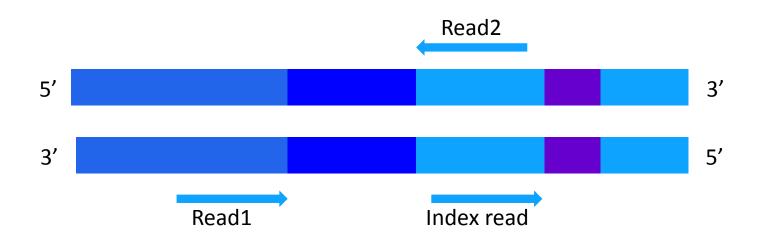
Illumina

The enzyme incorporates nucleotides to build double-stranded bridges on the solidphase substrate.

Denaturation leaves single-stranded templates andhored to the substrate.

Several million dense dusters of doublestranded DNA are generated in each channel of the flow cell.

After laser excitation, collect the image data as before. Record the identity of the second base for each duster.


Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at time.

GCTGA ...

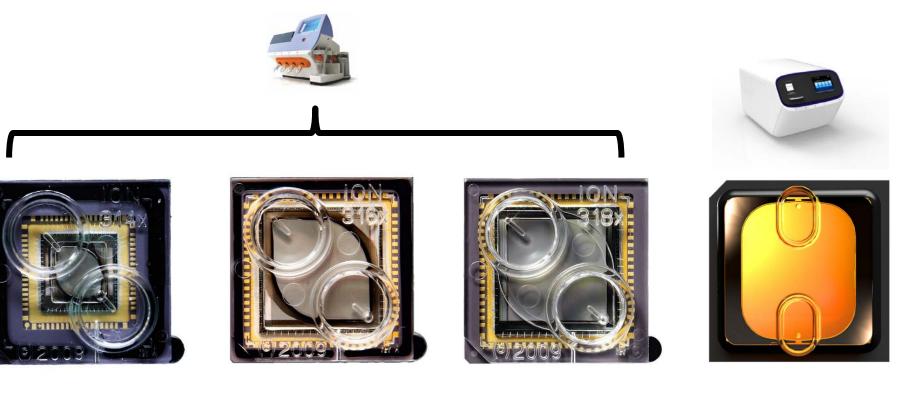
Align data, compare to a reference, and identify sequence differences.

Illumina reads

Paired-end sequencing

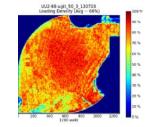
Life Technologies - Ion Torrent & Ion Proton

Chip	Yield - run time	Read Length
PGM 314	0.1 GB, 3 hrs	200 – 500
PGM 316	0.5GB, 3 hrs	200 - 500
PGM 318	1 GB, 3 hrs	200 - 500
P-I	10 - 18 GB	200

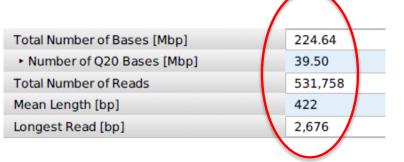

Ion Torrent's PGM

Main applications

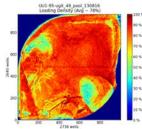

- Microbial and metagenomic sequencing
- Targeted resequencing
- Clinical sequencing



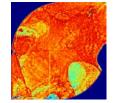
virus, b	200 bp eukaryote		
10 Mb	100 Mb 200 – 500 bp	1 Gb	10 Gb
314 chip	316 chip	318 chip	PI chip


IonTorrent Throughput - 400bp

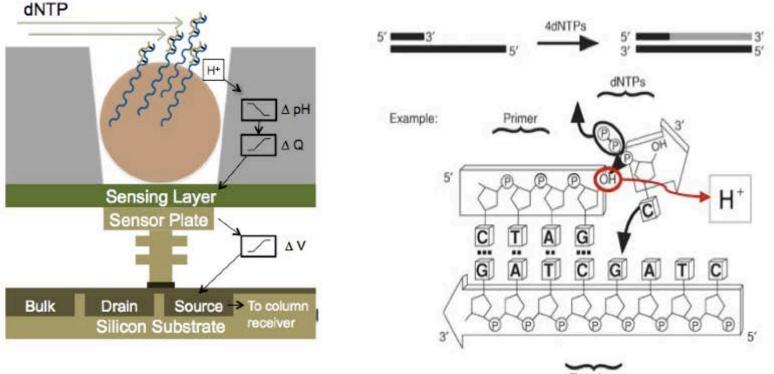
314 chip (10 Mbp)



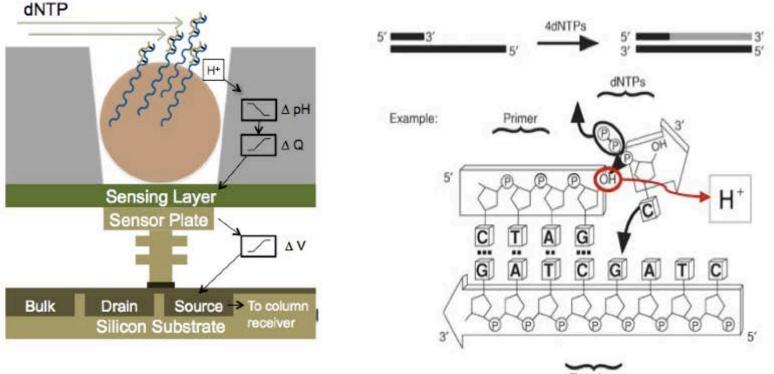
316 chip (100 Mbp)



318 chip (1 Gbp)



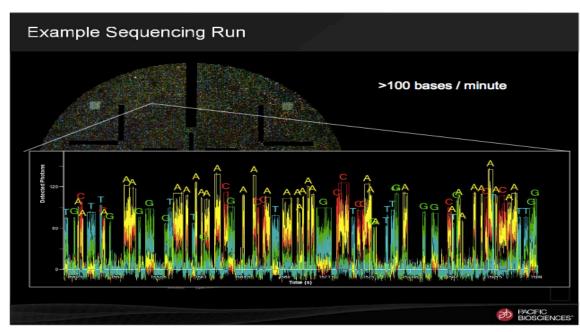
Total Number of Bases [Mbp]	707.33
 Number of Q20 Bases [Mbp] 	548.84
Total Number of Reads	2,933,870
Mean Length [bp]	241
Longest Read [bp]	619


	\frown	
Total Number of Bases [Mbp]	863.08	
• Number of Q20 Bases [Mbp]	667.99	
Total Number of Reads	4,417,950	2
Mean Length [bp]	195	
Longest Read [bp]	682	Γ

Ion Torrent - H⁺ ion-sensitive field effect transistors

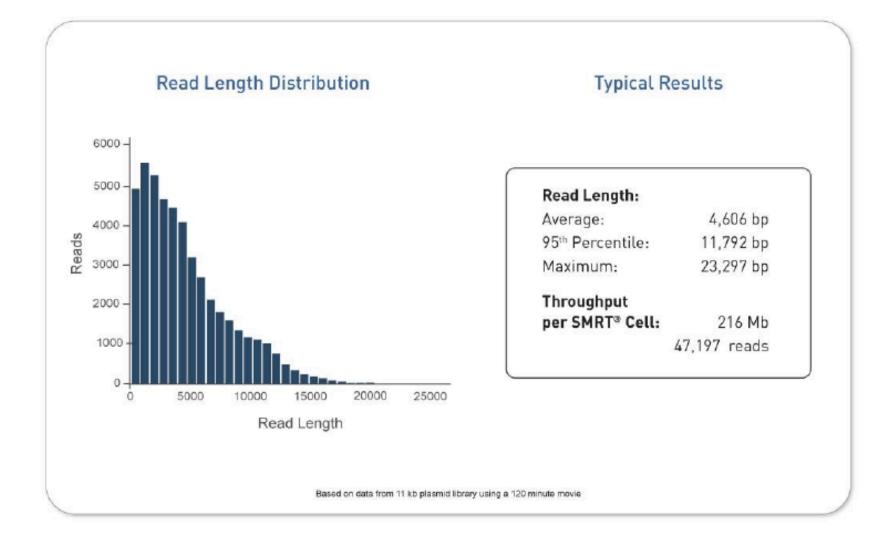
Template

Ion Torrent - H⁺ ion-sensitive field effect transistors



Template

Pacific Bioscience


Instrument	Yield and run time	Read Length	Error rate	Error type
RS II	500 Mb – 1.3 Gb /180 - 240 min SMRTCell	250 bp – 20 000 bp (40 000 bp)	15% (on a single passage!)	Insertions , random

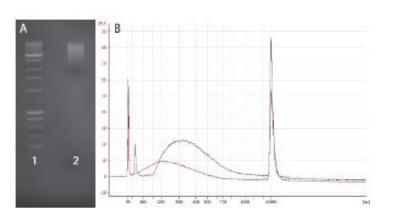
Single-Molecule, Real-Time DNA sequencing

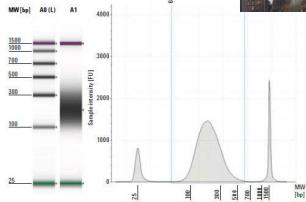
Typical PacBio[®] RS II Results

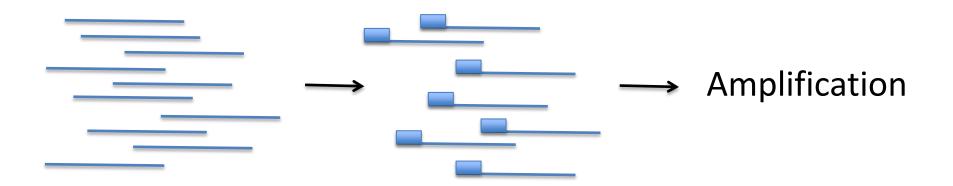
NGS technologies - SUMMARY

Platform	Read length	Accuracy	Projects / applications
454	Medium	Homo- polymer runs	Microbial + targeted reseq
HiSeq MiSeq	Short Medium	High	Whole genome + transcriptome seq, exome
Ion Torrent	Medium	High	Microbial + targeted reseq
Ion Proton	Short/Mediu m	High	Exome, transcriptome, genome
PacBio	Long	Low – ultra high*	Microbial + targeted reseq Gap closure & scaffolding

What is The BEST?




Sample prep and DNA libraries


Making a NGS library

DNA QC – paramount importance

Sharing & size selection

Ligation of sequencing adaptors, technology specific

Input QC control at NGI:

Qubit for DNA

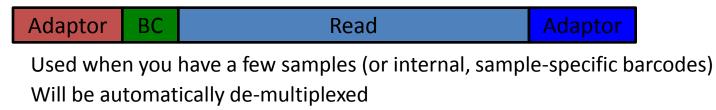
- Measures content of dsDNA only
- Nanodrop & NanoVue overestimate concentrations up to 300%!

- Bioanalyzer for RNA and amplicons
 - RNA: RIN values and concentrations
 - Amplicons: size distribution (extremely important!)

Bioanalyzer: amplicon size check

Example 1: OK size distribution

FOR ANY NGS TECHNOLOGY


[FU]Size difference among fragments **must not** 100exceed 80 bp (optimally 50 bp) Reason – preferential amplification of short fragments 50 0 150 300 500 15 1500 [bp] [FU] [FU] 35-30 -25-20-50 -15-10-5-0 50 300 500 1000 2000 5000 10380 15 150 500 1500 300 [bp]

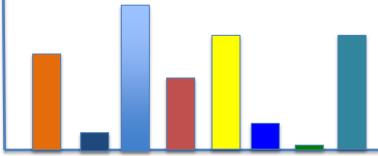
Example 3: broad peak; size selection is needed

Example 2: several sizes, fractionation is needed => we HAVE to make several libraries

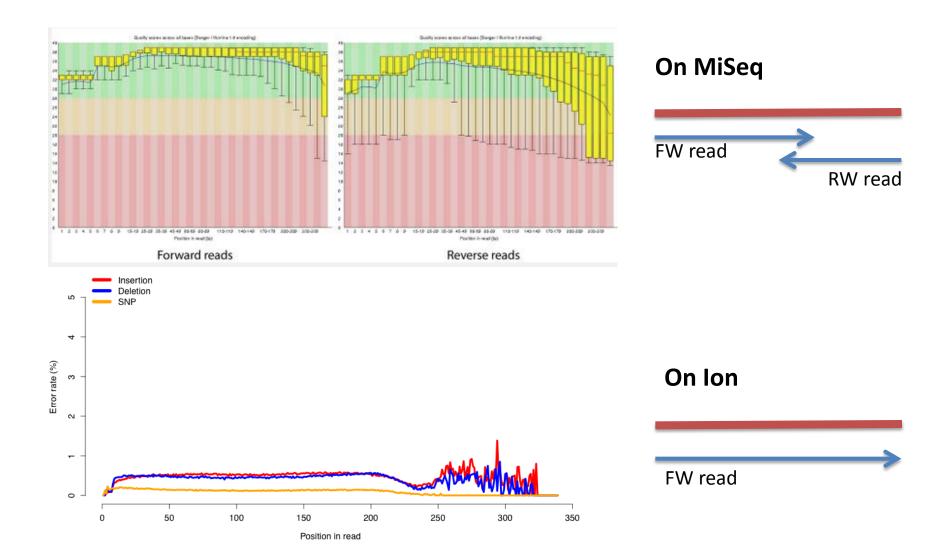
Two types of amplicon libraries

• Conventional library (900 – 2000 kr)

• Fusion primer – based library



Reverse primer A


Used when you have many samples Fusion primers must be of HPLC-quality Users must de-multiplex their own barcodes

Barcoding

- It is possible to barcode up till 96-plex
- Libraries are pooled together equimolarily
- Concentrations determined by qPCR or Fragment Analyzer
- Multiplexing heavier than 32 external barcodes is not recommended – barcode imbalance

When you sequence an amplicon...

Bioinformatics support at SciLifeLab

NGI offers only a limited support

• NGI is a sequencing service only

- We provide best practice analysis for:
 - De-multiplexing of libraries constructed by NGI
 - UGC: quality and adaptor trimming of Ion reads
 - Some applications mapping to reference, SNP calling, base-call statistics, etc.
 - De novo assembly of DNA sequences, if needed

SciLife Bioinformatics: short-term support - **BILS**

Bioinformatics Infrastructure for Life Sciences Originally VR infrastructure More than 40 employees around Sweden 80 hours support free of charge First come – first serve basis Additional support can be purchased for 2000 kr per 8 hours

SciLife Bioinformatics: long-term support - WABI

- Wallenberg Advanced Bioinformatics Infrastructure Originally KAW infrastructure
 - 15 employees in Uppsala Stockholm
 - 6 months support free of charge
 - 4 calls a year, reviewed by external expert panel
 - There MUST be recipient in the group
 - Work in collaboration with research groups

Questions

How much does approximately cost to run different types of anlysis, SNP's e-Dna, etc. *It all depends on a scientific question. Every new project must be discussed.*

Can SciLife lab provide Bioinformatic services? i.e help you analyse your sequences, and if so how much do they charge? *Yes: BILS and WABI*.

How do you apply for analyses by Scilife lab? *https://portal.scilifelab.se/genomics/*

Is it possible to buy even DNA extraction according to a certain protocol? And if so, how much is that? *No. We have no resources for that*.

Shotgun-sequencing. Is that more expensive/complicated as earlier techniques, and what are your experiences with this technique? *Hmm...* ⁽²⁾

Do you have a guarantee, i.e. if the sequencing does not give sufficient bp, or if there is a contamination during the preparation, are you doing a second run for free? If we fail – you get free re-run. If trouble is due to sample quality – sorry.