CV page

Tord Snäll

Tord Snäll
We have four main research interests (1) modelling the distribution or dynamics of (meta)populations or communities of species, (2) modelling ecosystem services, (3) applying models in for investigating how species, communities or ecosystem service may respond to scenarios of land-use or climate change, and (4) the usefulness of citizen science data for answering basic and applied questions.

Research

Modelling distributions or dynamics of (meta)populations or communities

A main research interest is to investigate the relative importance of environmental conditions and (meta)population processes such as dispersal in explaining the spatial distribution or dynamics of species, (meta)populations and communities of species. The work on single species includes investigating new approaches for estimating the rate of metapopulation dynamics using very limited amount of data, e.g. only the distribution pattern of a species among its habitat patches. We mainly do statistical modelling of field data on species occurrence or dynamics, but we also conduct field experiments and population genetic studies.

Modelling Ecosystem Services

We investigate the relative importance of local environmental conditions, tree species richness and composition in explaining levels of ecosystem services at different spatial scales. Provisional, supporting, regulating as well as cultural services are studied. We answer these questions by statistical modelling of field data, typically large scale monitoring data such as national forest inventory data.

Response of species or ecosystem services to scenarios of land-use or climate change

Another main research interest is to investigate how (meta)populations, communities and ecosystem services may be affected by scenarios of future forestry or climate change. This includes simulating scenarios (answering What if?) and optimization (answering How?). The main spatial scales studied are the landscape and national scales but we also consider the EU and global scales as part of the European ERA-Net projects (see below). The scenarios simulated are formulated together with a range of national stakeholders and with our ERA-Net project partners. For doing the simulations, we write our own code or we use available tools for forestry planning and optimization, such as Heureka.

Usefulness of citizen science data

The final main research interest is to investigate the usefulness of volunteers’ reports of observations of species to open-access websites such as Artportalen or GBIF for answering basic and applied questions. We particularly evaluate them for predicting species distributions, projecting species occurrence into the future and for species trend estimation. In this work, we also utilize the mapped data on explanatory variables that are publicly available via the Analysis Portal provided by Swedish LifeWatch.

Our work is currently funded by Formas, BiodivERsA (project GreenFutureForest) and Sumforest (project FutureBioEcon) that we lead/coordinate.
We further just received a positive decision on our proposed BiodivERsA project BioESSHealth (coordinator) and will soon announce postdoc position(s) for modelling/simulating forest management and beetle community structure.

Postdocs: Ute BradterJeannette Eggers, Henna FabritiusLaura HenckelAdriano Mazziotta, Helen Moor, Narayanan Subramanian.

Selected publications

International publications

In press

Mair L, Jönsson M, Räty M, Bärring L, Strandberg G, Lämås T, Snäll T. In press. Land use changes could modify future negative effects of climate change on old-growth forest indicator species. Diversity and Distributions.

Bradter U, Mair L, Jönsson M, Knape J, Singer A, Snäll T. In press. Can opportunistically-collected Citizen Science data fill a data gap for habitat suitability models of less common species? Methods in Ecology and Evolution.

Löbel S, Mair L, Lönnell N, Schröder B, Snäll T. In press. Relationships between biological traits and species responses to forest fragmentation and climate change in dead-wood inhabiting bryophytes. Journal of Ecology.

Ruete A, Jönsson M, Snäll T. In press. Conservation benefits of implementing international Aichi protection and restoration targets for future epiphyte metapopulations. Journal of Applied Ecology.

2017

Ronnås C, Werth S, Ovaskainen O, Várkonyi G, Scheidegger C, Snäll T. 2017. Discovery of long-distance gamete dispersal in a lichen-forming ascomycete. New Phytologist 216: 216-226.

Snäll T, Johansson V, Jönsson M, Ortiz C, Hammar T, Caruso A, Svensson M, Stendahl J. 2017. Transient trade-off between climate benefit and biodiversity of harvesting stump for bioenergy. Global Change Biology Bioenergy 9: 1751-1763.

Pohjanmies T, Triviño M, Le Tortorec E, Mazziotta A, Snäll T, Mönkkönen M. 2017. Impacts of forestry on boreal forests: An ecosystem services perspective. Ambio 46: 743-755.

Mair L, Harrison PJ, Räty M, Bärring L, Strandberg G, Snäll T. 2017. Forest management could counteract distribution retractions forced by climate change. Ecological Applications 27: 1485-1497.

Ruete A, Snäll T, Jonsson BG, Jönsson M. 2017. Long-term effects of transient anthropogenic edges and forest fragment size on the occupancy of deadwood-dwelling fungi. Journal of Applied Ecology 54: 1142-1151.

Jönsson M, Ruete A, Kellner O, Gunnarsson U, Snäll T. 2017. Will forest conservation areas protect functionally important diversity of fungi and lichens over time? Biodiversity and Conservation 26: 2547-2567.

Belinchón R, Harrison PJ, Mair L, Várkonyi G and Snäll T. 2017. Local epiphyte establishment and future metapopulation dynamics in landscapes with different spatio-temporal properties. Ecology 98: 741-750.

Mair L, Harrison PJ, Jönsson M, Löbel L, Nordén J, Siitonen J, Lämås T, Lundström A, Snäll T. 2017. Evaluating citizen science data for forecasting species responses to national forest management. Ecology and Evolution 7: 368-378.

Jonsson M, Snäll T, Asplund J, Clemmensen KE, Dahlberg A, Kumordzi BB, Lindahl BD, Oksanen J, Wardle DA. 2017. Divergent responses of β-diversity among organism groups to a strong environmental gradient. Ecosphere 7: e01535.

2016

Ruete A, Snäll T, Jönsson M. 2016. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests. Ecological Applications 26: 1475–1485.

Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A, Somma F, Petersen J-E, Meiner A, Royo Gelabert E, Zal N, Kristensen P, Bastrup-Birk A, Biala K, Piroddi C, Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J, Pereira HM, Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San Miguel J, Pérez-Soba M, Grêt-Regamey A, Lillebø A, Abdul Malak D, Condé S, Moen J, Czúcz B, Drakou EG, Zulian G, Lavalle C. 2016. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem services 17: 14-23.

Snäll T, Lehtomäki J, Arponen A, Elith J, Moilanen A. 2016. Green Infrastructure design based on spatial conservation prioritization and modeling of biodiversity features and ecosystem services. Environmental Management 57:251–256.

Svensson, M., Caruso, A., Yahr, R., Ellis, C., Thor, G., Snäll,T. 2016. Combined observational and experimental data provide limited support for facilitation in lichens. Oikos 125: 278–283.

2014

Ruete, A., Fritz, Ö. & Snäll, T. 2014. A model for non-equilibrium metapopulation dynamics utilizing data on species occupancy, patch ages and landscape history. Journal of Ecology 102: 678-689.

Johansson, V., Ranius, T. & Snäll, T. 2014. Development of secondary woodland decreases epiphyte metapopulation sizes in wooded grasslands. Biological Conservation 172: 49-55.

Snäll, T., Forslund, P., Jeppsson, T., Lindhe, A., O’Hara, R.B. 2014. Evaluating temporal variation in Citizen Science Data against temporal variation in the environment. Ecography 37: 293-300.

Maes, J., Teller, A., Erhard, M., Murphy, P.,  Paracchini, M.L., Barredo, J.I., Grizzetti, B., Cardoso, A., Somma, F.,  Petersen, J.-E., Meiner, A., Royo Gelabert, E., Zal, N., Kristensen, P., Bastrup-Birk, A., Biala, K., Romao, C., Piroddi, C., Egoh, B., Fiorina, C., Santos, F., Naruševičius, V., Verboven, J., Pereira, H., Bengtsson, J., Kremena, G., Marta-Pedroso, C., Snäll, T., Estreguil, C., San Miguel, J., Braat, L., Grêt-Regamey, A., Perez-Soba, M., Degeorges, P., Beaufaron, G., Lillebø, A., Abdul Malak, D., Liquete, C., Condé, S., Moen, J., Östergård, H., Czúcz, B., Drakou, E.G., Zulian, G., Lavalle, C. 2014. Mapping and Assessment of Ecosystems and their Services – Indicators for ecosystem assessments under Action 5 of the EU Biodiversity Strategy to 2020. European Commission. ISBN: 978-92-79-36161-6.

2013

Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P.,  Ruiz-Jaen, M.C., Fröberg, M., Stendahl, J., Philipson, C.D., Mikusiński, G., Andersson, E., Westerlund, B., Andrén, H., Moberg, F., Moen, J., Bengtsson, J. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications 4: Article number 1340.

Johansson, V., Ranius, T. & Snäll, T. 2013. Epiphyte metapopulation persistence after drastic habitat decline and low tree regeneration: time lags and effects of conservation actions. Journal of Applied Ecology 50: 414-422.

Johansson, V., Snäll, T., & Ranius, T. 2013. Estimates of connectivity reveal non-equilibrium epiphyte occurrence patterns almost 180 years after habitat decline. Oecologia 172: 607-615.

Angelstam, P., Roberge, J.-M., Axelsson, R., Elbakidze, M., Bergman, K.-O., Dahlberg, A., Degerman, E., Eggers, S., Esseen, P.-A., Hjältén, J., Johansson, T., Müller, J., Paltto, H., Snäll, T. , Soloviy, I., Törnblom, J. 2013. Evidence-based knowledge versus negotiated indicators for assessment of ecological sustainability: the Swedish Forest Stewardship Council standard as a case study. Ambio 42: 229-240.

2012

Ruete A, Yang W, Bärring L, Stenseth NC & Snäll T. 2012. Disentangling effects of uncertainties on population projections: climate change impact on an epixylic bryophyte. Proceedings of the Royal Society B: 279: 3098-3105.

Löbel, S., Snäll, T. & Rydin, H. 2012. Epiphytic bryophytes near forest edges and on retention trees: reduced growth and reproduction especially in old-growth-forest indicator species. Journal of Applied Ecology 49: 1334-1343.

Johansson V, Ranius T & Snäll T. 2012. Epiphyte metapopulation dynamics are explained by species traits, connectivity and patch longevity. Ecology 93: 235–241.

Ruete A, Wiklund K & Snäll T. 2012. Hierarchical Bayesian estimation of the population viability of an epixylic moss. Journal of Ecology 100: 499-507. (Journal of Ecology's blog)

Zartman CE, Nascimento HEM, Cangani KG & Alvarenga LDP & Snäll T. 2012. Fine-scale changes in connectivity affect the metapopulation dynamics of a bryophyte confined to ephemeral patches. Journal of Ecology 100: 980-986.

Fedrowitz K, Kuusinen M & Snäll T. 2012. Metapopulation dynamics and future persistence of epiphytic lichens in boreal forests. Journal of Applied Ecology 49: 493–502.

Lankia, H., Wallenius, T., Várkonyi, G., Kouki, J. & Snäll, T. 2012. Forest fire history, aspen, and goat willow in a Fennoscandian old-growth landscape: are current population structures a legacy of historical forest fires? Journal of Vegetation Science 23: 1159-1169.

2011

Snäll T, Kindvall O, Nilsson J, Pärt T. 2011. Evaluating citizen-based presence data for bird monitoring. Biological Conservation 144: 804-810.

Roberge J-M, Johansson S, Wulff S & Snäll T. 2011. Edge creation and tree dieback influence the patch-tracking metapopulation dynamics of a red-listed epiphyte. Journal of Applied Ecology 48: 650-658.

Paltto H, Nordberg A, Nordén B & Snäll T. 2011. Development of secondary woodland in oak wood pastures reduces the richness of red-listed epiphytic lichens. PlosONE 6: e24675.

Björkman C, Johansson H & Snäll T. 2011. Spatial distribution of competing insect predators: possible roles of intraguild predation and the surrounding habitat. Basic and Applied Ecology 12: 516-522.

2010

Caruso, A., Thor, G. & Snäll T. 2010. Colonization-extinction dynamics of epixylic lichens along a decay gradient in a dynamic landscape. Oikos 119: 1947-1953.

Orians C.M., Hochwender C.G., Fritz R.S., and Snäll T. 2010. Growth and chemical defense in willow seedlings: trade-offs are transient. Oecologia 163: 283-290.

Johansson, V., Snäll, T., Johansson, P & Ranius, T. 2010. Detection probability and abundance estimation of epiphytic lichens based on height-limited surveys. Journal of Vegetation Science 21: 332-341.

2009

Snäll, T., Benestad, R.E. & Stenseth, N.C. 2009. Expected future plague levels in a wildlife host under different scenarios of climate change. Global Change Biology, 15, 500-507.

Löbel, S., Snäll, T. & Rydin, H. 2009. Mating system, reproduction mode and diaspore size affect metacommunity dynamics. Journal of Ecology 97, 176-185.

Jonsson P, Sandgren F, Lindberg E & Snäll T. 2009. Towns and rural industrialisation in Sweden 1850-1890: a spatial statistical approach. Scandinavian Economic History Review 57:229-251.

2008

Ben Ari, T., Gershunov, A. Gage, K.L., Snäll, T, Ettestad, P, Kausrud, K.L. & Stenseth, N.C. 2008. Human plague in US: the importance of regional and local climate. Biology Letters, 4, 737-740.

Chi, C.N., Elfström, L., Shi, Y., Snäll, T., Engström, Å. & Jemth, P. 2008. Reassessing a sparse energetic network within a single protein domain. Proceedings of the National Academy of Sciences of the United States of America, 105: 4679-4684.

Snäll, T., O’Hara, R.B., Ray, C. & Collinge, S.K. 2008. Climate-driven spatial dynamics of plague among prairie dog colonies. The American Naturalist, 171: 238-248.

2007

Ringvall, A., Snäll, T., Ekström, M. & Ståhl, G. 2007. Unrestricted guided transect sampling for surveying sparse species. Canadian Journal of Forest Research, 37: 2575-2586.

Snäll, T., O’Hara, R.B. & Arjas, E. 2007. A mathematical and statistical framework for modelling dispersal. Oikos 116:966-974.

Kuparinen, A., Snäll, T., Vänskä, S. O’Hara, R.B. 2007. The role of model selection in describing stochastic ecological processes. Oikos 116:1037-1050.

2006

Löbel, S. Snäll, T., and Rydin, H. 2006. Species richness patterns and metapopulation processes - evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169-182.

Löbel, S. Snäll, T., and Rydin, H. 2006. Metapopulation processes in epiphytes inferred from patterns of regional distribution and local abundance in fragmented forest landscapes. Journal of Ecology 94:856-868.

2005

Snäll, T., Pennanen, J., Kivistö, L. and Hanski, I. 2005.Modelling epiphyte metapopulation dynamics in a dynamic forest landscape. Oikos 109, 209-222.

Snäll, T., Ehrlén, J. and Rydin, H. 2005.Colonization-extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology 86: 106-115.

2004

Snäll, T., Hagström, A., Rudolphi, J. and Rydin, H. 2004. Distribution pattern of the epiphyte Neckerapennata on three spatial scales - importance of past landscape structure, connectivity and local conditions.Ecography 27: 757-766.

Snäll, T., Fogelqvist, J., Ribeiro Jr., P. J. and Lascoux, M. 2004.Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analysed by three different methods. Molecular Ecology 13: 2109-2119.

2003

Snäll, T., RibeiroJr, P. J. and Rydin, H. 2003. Spatial occurrence and colonisations in patch-tracking metapopulations of epiphytic bryophytes: local conditions versus dispersal. Oikos 103: 566-578.

Snäll, Tord. 2003. Distribution Patterns and Metapopulation Dynamics of Epiphytic Mosses and Lichens. Acta UniversitatisUpsaliensis.Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 918.36 pp. Uppsala.

2001

Snäll T. and Jonsson B. G. 2001. Edge effects on six polyporous fungi used as indicators in forest fragments. Ecological Bulletins 49: 55-62.

National publications

Eriksson A, Snäll T, Harrison PJ. 2015. Analys av miljöförhållanden – SKA 15. Swedish Forest Agency, Report 11.

Jönsson M, Ruete A, Gunnarsson U, Kellner O, Snäll T. 2015. Övervakning av värdefulla skogsbiotoper – en utvärdering av extensivmetoden efter 10 år. ArtDatabanken Rapporterar 18. ArtDatabanken, SLU, Uppsala.

Johansson V, Caruso A & Snäll T. 2013. Vedlevande lavarters populationsutveckling i fragmenterade landskap: effekten av olika scenarier av stubbskörd. Swedish Energy Agency project Report.

Snäll T, Moen J, Berglund H, Bengtsson J. 2014. Mapping and assessment of ecosystems and their services – the Swedish forest pilot. Rapport 6626, Naturvårdsverket. Bromma.

Johansson V, Ranius T & Snäll T. 2013. Brist på gamla ekar hotar lavar. Svensk Botanisk Tidskrift 6: 344-349.

Jönsson M & Snäll T. 2013. Citizen science i gränslandet mellan vetenskap och folkbildning. Biodiverse 1: 28-29.

Fedrowitz K & Snäll T. 2012. Många stora aspar ger lavarna en chans. Notiser från SLU 2012:June.

Snäll, T. & Roberge, J-M. 2011. Buffertzon kan skydda rödlistade arter. Notiser från SLU, 2.

Snäll, T. & Kellner, O. 2003. Utvärdering av metod för övervakning av skogsbiotoper. Länsstyrelsen Gävleborgs län. Rapport 2003:15.

Naturvårdsverket, by Snäll, T. 1999. In Handbok för miljöövervakning: Extensiv övervakning av skogsbiotopers (-bestånds) innehåll med inriktning mot biologisk mångfald. (www.naturvardsverket.se).

Snäll, T. 1997. Regional övervakning av skogsområden i Dalarna. Miljövårdsenheten, Länsstyrelsen Dalarna


Contact
Professor at the Swedish Species Information Centre; Swedish Species Information Centre, Nature Conservation programme
Telephone: 018-672612, 076-7662612
Postal address:
ArtDatabanken, Box 7007
75007 UPPSALA
Visiting address: Almas allé 8E, Uppsala