

SCIENCE AND FOR EDUCATION FOR SUSSIAINABLE LIFE

Opportunities in building resilience in degraded watersheds: experience from the field in African context

Jennie BARRON, Professor Agricultural Water Management, Swedish University of Agricultural Sciences

24 January 2020 Uppsala

Building climate resilience for people in landscapes: a complex systems approach!

SLU

Content

- Frameworks for resilience at landscape scales
- Testing participatory tool for agriculture landscapes resilience action
- Emerging evidence on transforming landscapes

Frameworks for resilience at landscape scale: How do we measure?

SLU

A review show a plethora of tools shaped by creator discourse with little impact assessments (yet)

- <50 tools and approaches evaluated
- No tool specific to agriculturally dominated livelihoods and landscapes in developing context
- Tools are highly diverse in theory grounding, methods and data
- Capacity, time and costs (data and analysis) challenges implementation
- There are very few consistent use of tools, weakening
 evidence of actual resilience strengthening

Emerging properties of resilience difficult (or not assessed...)

• Choice of indicators and linkages to characterise "resilience" tools

Testing participatory tool for agriculture landscapecommunity resilience action

Four agricultural smallholder farming dominated landscapes (watersheds) in dry sub-humid regions

Watershed / Indicator	G1	G2	E1	E2
Poverty	50%	< 9%	35%	63%
Education	<50%	>60%	75%	68%
Water and sanitation	Drinking water: 50%; sanitation: <15% lack improved sanitation.	Drinking water: >80% sanitation: 10% lack improved sanitation.	Drinking water: 69% have access to improved water; sanitation: 94% lack improved sanitation in rural areas	Drinking water: 42% have access to improved water in rural areas; sanitation: 94% lack improved sanitation in rural areas
Agricultural management	Water for irrigation and livestock from reservoir (0.025Mm2); Soil and water conservation; intercropping and crop rotation; rainfed.	Fertilizers. Irrigation Dec-Jun from small reservoir (<6Mm2); Soil and water conservation; intercropping and crop rotation; rainfed.	Mineral fertilizers and irrigation; Soil and water conservation; rainfed.	Mineral fertilizers and irrigation. Soil and water conservation; rainfed
Farm size	94% / <2 ha	67% /<2 ha	55% / <1ha	<1ha

Watershed and livelihood characterization both confirms and show some surprises

Confirming:

- Recurring multiple risks/challenges in livelihood-landscape systems
- Inherent relative low and/or unclear capacity to cope

Surprises:

- Trends in rainfall patterns, and internal growing pressure on available resources
- Show stagnant or growing 're-greening'

30-year trends of rainfall landuse in 4 watersheds (Ghana, Ethiopia)

	Rain amount	Rain distribution	Vegetation yield	Vegetation trees
ETH1	0	-	(+)	+
ETH2	0	-	(+)	+
GHA1	0	-	(+)	0
GHA2	0	-	(+)	0

ater. Land and

Can community developed action plans towards resilience make the difference?

Protocol modular approach

- i. Link livelihoods and landscapes water- ecosystem services (internal and external data)
- ii. Map major events, shocks and coping/adaptation strategies
- iii. Create a watershed action plan for improve resilience

Analysis of action plans

- Communities proud of plan(!)
- Joint learning of social –environmental linkages
- "doing more of what is already known"
- External input needed to make transformative shifts?

Emerging evidence on transforming landscapes

Yet landscapes transforms into better states?

A range of cases /examples that agricultural landscapes transforms:

Example:

- Acacia D. for charcoal Amhara region Ethiopia (Karltun et al, SLU, Univ. Gondar, Wondo Genet College)
- Rainfed systems Ne Tanzania
- Niger-FMNR
- Small reservoirs W Africa for horticulture ...

- Market developed
- Investment input
- Knowledge and innovation
- Locally recognising environmental value (governance)

Afforestation with Acacia D. Amhara region: Supplying charcoal with 5 yrs rotations 2002-2017

- Acacia decurrens cultivation area increased from <1% to 42.1% of the woreda area – c. 31000 ha of plantations
- Open cropland decreased from 67% to 30% and grazing land from 19% to 12%; Forest land (except Acacia d.) increased and bushland density increased
- Built a sector of small and large entrepreneurship locally and beyond
- Livelihood income, wellbeing and labour
- Farmer –entrepreneur driven!
- Landscape sustainability (carbon, water, soil)

Lessons learned and ways ahead?

- Market developments as a driver for agricultural sustainability?
- We have little global data on where and how landscapes has changed, especially in positive (resilient) direction
- Manage emerging properties (change, transformation) such as resilience in landscapes
- Long-term landscape scale environmental monitoring gap

Thank you!

Work supported by

- USAID <u>https://www.iwmi.cgiar.org/2018/05/the-road-to-climate-resilience/</u>
- CGIAR research program "Water, Land and Ecosystems"
- Vetenskapsrådet and SLU <u>https://www.slu.se/en/departments/urban-rural-</u> <u>development/research/rural-development/ongoing-research/afforestation/</u>

Vetenskapsrådet

