Medical countermeasures against Rift Valley fever

Jonas Näslund

RVF research in Umeå

• Kinetics of RVFV infection in mice
Quantitative real-time PCR

- Detect and quantify the RVFV (genomes)
- Primers that target the S-segment

Kinetics of RVFV infection

RVF research in Umeå

• Kinetics of RVFV infection in mice
• RVFV vaccination in mice

Treatment and Vaccines

Anti viral
→ No specific for RVFV exist

Vaccines
→ Animals
 → Smithburn vaccine strain – attenuated through neuroadaption
 → Formalin inactivated RVFV
→ Humans (only for high risk personnel)
 → TSI-GSD-200
Vaccine Candidates

- Clone 13 - natural isolate
- MP12 - chemically induced attenuation
- R556 - reassortant of Clone 13 and MP12
- Genetically engineered RVFV
- Viral vectors – Adenovirus, Alphavirus, Newcastle disease virus
- DNA vaccine
- Virus-like particles

VLP vaccination against RVFV

- Intra peritoneal immunised mice (C57Bl/6).
- 2 different doses.
- Challenged with wild type RVFV.
RVF VLPs are immunogenic in mice

Vaccination with RVF VLPs induce virus neutralizing antibodies

VLP vaccination against RVFV

Outcome

Control 1x10⁵ VLPs/dose 1x10⁶ VLPs/dose

Swedish Defence Research Agency – Division of CBRN Defence and Security
Vaccinations with RVF VLPs suppress viral replication after challenge

VLP vaccination against RVFV
Näslund et al., Virology, 2009

RVF research in Umeå
• Kinetics of RVFV infection in mice
• RVFV vaccination in mice
• Field sampling

Swedish Defence Research Agency – Division of CBRN Defence and Security
Field sampling

- Nobuto filter strips
- Dried in blood samples with known amounts of virus
- Measure RNA load and infectivity

RVFV RNA was not detected
Blood stored on filter paper less than 48h may contain viable RVFV particles
RVF research platform in Umeå

- Animal model
- Mosquito transmission facilities
- BSL-3 lab
- RVFV with reporter genes (BSL 2)
- VLPs with marker dyes
- Small inhibitory compound screening platform
- Cell line library
- qRT-PCR, antibodies (serology)
- Collaboration with scientists in endemic countries

RVFV in Umeå

Magnus Evander, Umeå University
Clas Ahlm, Umeå University
Göran Bucht, FOI Umeå
Nina Lagerkvist, Umeå University and Karolinska Inst.
Maria Baudin, Umeå University

Collaboration
Friedemann Weber, Marburg University, Germany
Rosemary Sang, Icipe, Kenya
Michèle Bouloy, Pasteur Institute, France
Åke Lundkvist, Karolinska Institute
Osama Ahmed Hassan, Sudan

Thank you for your attention!!
Rift Valley Fever Virus
Bunyaviridae, Phlebovirus

- **S segment**
 - N protein
 - NSs protein

- **M segment**
 - Gn, Gc proteins
 - NSm protein

- **L segment**
 - L protein

RNP = Ribonucleoprotein
Vector competence for RVFV Viruses in Swedish mosquitoes

47 different blood-feeding mosquitoes in Sweden
Competent for RVFV transmission?
RVFV infection kinetics in mosquitoes

Virus surveillance in Swedish mosquitoes
Advantages and disadvantages of animal models for RVF virus

<table>
<thead>
<tr>
<th>Model</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Highly susceptible to RVF</td>
<td>No hemorrhagic fever</td>
</tr>
<tr>
<td></td>
<td>Infected most usually die in 3–5 weeks, and are suitable for viral challenge studies</td>
<td>No severe disease</td>
</tr>
<tr>
<td>Rodent</td>
<td>Slightly susceptible, non-pathological in nature</td>
<td>Suitable for studying host genes responsible for RVF viral propagation</td>
</tr>
<tr>
<td></td>
<td>Vehicle pathogenic challenge to the animal</td>
<td>Slightly susceptible, non-pathological in nature</td>
</tr>
<tr>
<td></td>
<td>Useful for the study of RVF replication</td>
<td>The use of different animal models can be affected by different factors such as RVF virus</td>
</tr>
<tr>
<td></td>
<td>Minireplicon constructs</td>
<td>Reproducibility differences in susceptibility</td>
</tr>
<tr>
<td>Hamster</td>
<td>Slightly susceptible to RVF</td>
<td>No hemorrhagic fever</td>
</tr>
<tr>
<td></td>
<td>Ideal animal for viral challenge studies by inoculation</td>
<td>No severe disease</td>
</tr>
<tr>
<td></td>
<td>Useful for studying viral transmission by inoculation</td>
<td>Limited research resources</td>
</tr>
<tr>
<td>Octid</td>
<td>Slightly susceptible to RVF</td>
<td>No hemorrhagic fever</td>
</tr>
<tr>
<td></td>
<td>Useful for studying viral transmission by inoculation</td>
<td>Limited research resources</td>
</tr>
<tr>
<td>Guinea pig</td>
<td>Slightly susceptible to RVF</td>
<td>No hemorrhagic fever</td>
</tr>
<tr>
<td></td>
<td>Useful for studying viral transmission by inoculation</td>
<td>Limited research resources</td>
</tr>
<tr>
<td>Mice</td>
<td>Slightly susceptible to RVF</td>
<td>No hemorrhagic fever</td>
</tr>
<tr>
<td></td>
<td>Suitable for studying viral transmission by inoculation</td>
<td>Limited research resources</td>
</tr>
<tr>
<td></td>
<td>Minireplicon constructs</td>
<td>Reproducibility differences in susceptibility</td>
</tr>
</tbody>
</table>

RVF Virus–Like–Particles (VLP)

- **L**: Viral polymerase
- **M**: Viral glycoproteins Gc and Gn
- **N**: Nucleocapsid protein
- **Ren**: Minireplicon construct
- **FF**: Firefly luciferase

Swedish Defence Research Agency – Division of CBRN Defence and Security