

Teaming up for animal health, in the interest of animals, their owners and society at large

Control of Salmonella spp. in Dutch dairy herds

Maarten F. Weber,

GD Animal Health, Deventer, The Netherlands

Human salmonellosis (NL)

Human salmonellosis cases (per 17,000,000 humans)				
	2013	2014	2015	
General population	28,000	27,500	27,200	
General practitioner	4,200	4,100	4,380	
Hospitalised	1,100	1,080	1,068	
Death	27	27	25	

Figuur 2.19.2A Geschatte bijdrage aan de humane, laboratoriumbevestigde salmonellose (linker y-as) door reizen (of onbekend), landbouwhuisdieren of hun producten. Omvangrijke explosies die niet representatief zijn voor de *Salmonella*-status van de Nederlandse vee- en pluimveestapel, zijn in groen aangegeven. (Bron: Laboratoriumsurveillance RIVM)

Epidemiol. Infect. (2009), **137**, 1548–1557. © Cambridge University Press 2009 doi:10.1017/S0950268809002337 Printed in the United Kingdom

A prolonged outbreak of *Salmonella* Typhimurium infection related to an uncommon vehicle: hard cheese made from raw milk

Y. T. H. P. VAN DUYNHOVEN^{1*}, L. D. ISKEN¹, K. BORGEN^{1,2}, M. BESSELSE³, K. SOETHOUDT³, O. HAITSMA³, B. MULDER⁴, D. W. NOTERMANS¹, R. DE JONGE¹, P. KOCK⁵, W. VAN PELT¹, O. STENVERS⁶ AND J. VAN STEENBERGEN¹, on behalf of the Outbreak Investigation Team[†]

¹ Centre for Infectious Disease Control Netherlands, National Institute of Public Health and the Environment (RIVM/CIb), Bilthoven, The Netherlands

² European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Centrel, Sweden

Control in Dutch dairy herds

- Certification-and-surveillance programme (2000 present)
 - enable low risk trade of cattle between herds
 - alert farmers to an infection in their herd
 - reduce human exposure
- Control programme dairy processors (2008 present)
 - stimulate farmers to control infection in their herd
 - reduce prevalence of infection

Scheme of dairy processors

• Bulk milk ELISA @ 4 month intervals

Scheme of dairy processors

• Bulk milk ELISA @ 4 month intervals

Distance to pigs:

>2 km: reference 0 km: OR = 1.9

Herd size

Average: reference < 36: OR = 0.7 36-75: OR = 0.9 73-137: OR = 1.1 >137: OR = 1.6

Increase of herd size (1 yr)

Average: reference >12.5% increase: OR = 0.9

Net profit

Average: reference 10% highest: OR = 0.5

Cattle introduced from other herds

None: reference Test-negative herd(s): OR = 1.2 Test-positive herd(s): OR= 1.4

Concept of control

- Preventive measures
 - reduce rate of introduction of infection
 - increase probability of extinction of infection

Clinical trial (2005-2008)

- 50 herds, > 1 year infected
- intervention: identification of salmonella carriers & advice to eliminate them
- aim: evaluate efficacy of intervention, adjusted for differences in herd management

Clinical trial

· Fitted time until 'salmonella-unsuspected'

Clinical trial

 Probability of achieving 'salmonella-unsuspected' status within 1 year:

Scheme of dairy processors

• Bulk milk ELISA @ 4 month intervals

Field study (2012-2014)

• 100 dairy herds, level 3 after test round 2012-2:

Herds	2012-3	2012-3	Number of herds
Control	Ν	Ν	30
	Р	Ν	20
Case	Р	Р	50

Yes: reference No: OR = 4.0 Calves 1st week water Yes: reference No: OR = 4.2

Calving shed Individual: reference Group: OR = 14 None: NS

Cats: OR = 7.2

Soil:

Sandy loam, low moor bog, clay >> sand Harvesting silage between fertilisation with slurry and summer barn feeding Yes or N/A: reference No: OR = 6.1

Field study (2012-2014)

Further analyses confirm effects of

- Infection pressure
- Hygiëne and separation of groups
- Resistance to infection
- Soil type

Field study (2012-2014)

Action plans

- Important preventive measures frequently not identified
- Poor compliance
- Often only part of herd tested to identify active carriers
- Identified active carriers not always eliminated

Results

 1/3 of Level 3 herds achieved Level 1 during 16 months study period

Post mortem (dairy herds)

Year

- Control in infected herds is feasible, provided the farmer is prepared to take vigorous action
- Progress on national level less than anticipated

Challenges for the future:

- Influence contact structure between herds
- Stimulate farmers to take action, right now
- Study dynamics of various serotypes and adapt, if needed, control measures

Conclusion

Salmonellosis in dairy cattle: endemic, yet dynamic

GD - Animal Health

GD