

Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application

Yves Coquet

ISTO

The « profil cultural »

(Manichon, 1982)

• Does it affect pesticide fate and transport ?

The Qualiagro field trial

- SGW: co-compost made of sewage sludge and green wastes
- MSW: compost made of municipal solid wastes
- CONT: control

The Qualiagro field trial

IPU LOQ: 0.02 μg/L

- Near-saturated K (-0.6, -0.4, -0.2, -0.125 and -0.05 kPa) measured in each plot for each type of soil structure
- Water retention measured on 50 cm3 soil samples taken from each plot and soil structure
 - Bulk density was determined from cylinders of 2.5 cm diam. and 4 cm length taken horizontally from each soil observation face at the nodes of a rectangular grid (0.36 m height, 1 m width) with 4-cm mesh

The Qualiagro field trial

- IPU Sorption and degradation rate measured in the lab for each plot for each type of soil structure
- Water flow and IPU transport modeled with HYDRUS-2D/3D (2 X 2 m domain)
- Seepage face (-70 cm)
- IC: equilibrium with -100 cm at the bottom

- No outflow if independently measured parameters
- Water outflow from tension lysimeter very well predicted after calibration of Ks, alpha, n (on 2008 data)

- *Preferential transport!*
- Degradation rates multiplied by 10, 2.4 and 4 for the SGW, MSW and CONT
- No effect of the last application

 Degradation rate lowered for the 2009/10 application (2 yr after the previous one)

- IPU concentrations 186 days after the 2nd application
- Largest C in Γ soil

Conclusions

- There is a large variability of soil parameters than govern IPU fate and transport at the plot scale
- This variability can be (partly) explained by the heterogeneity created by tillage
- Independently-measured parameters are insufficient to properly describe IPU fate and transport
- Preferential (macropore) flow occurs in loamy soils!

Parameters

Table 3

Soil hydraulic (after manual calibration) and solute transport parameters after for the SGW, MSW and CONT plots for each layer/structure (Γ structure, Δ structure, interfurrows - IF, plough pan - PP, E, BTI, BTICI, BTICI, BTICI, and IC layers).

		Layer/Structure									
	Parameter	Г	Δ	IF	рр 28-38 cm	E 38-50 cm	ВП 50-70 cm	впі 70-90 cm	BTICI 90-120 cm	BTICII 120-145 cm	IC 145-200 cm
			0-28 cm								
	Soil	1.2					Sec. all				
	θ_r (cm ³ .cm ⁻³)	0.0002	0	0	0.105	0	0.0006	0.0006	0	0	0
	θ_s (cm ³ .cm ⁻³)	0.410	0.410	0.461	0.455	0.380	0.370	0.380	0.370	0.360	0.300
	α (cm ⁻¹)	0.0385	0.0073	0.024	0.042	0.015	0.024	0.028	0.020	0.029	0.032
	n	1.14	1.20	1.18	1.1	1.17	1.12	1.12	1.09	1.12	1.10
SGW	K _s (cm day ⁻¹) Solute	19.6	2.8	353	4.8	14	5.8	7.9	3.8	3.7	8.0
	K_d (L kg ⁻¹)	1.49	1.69	2.28	1.05	0.42	0.35	0.35	0.25	0.25	0.25
	$\mu(day^{-1})$	0.0361	0.0513	0.0673	0,0361	0,0062	0.0065	0.0065	0	0	0
	D _L (cm) Basic	4	4	4	11.9	11.9	11.9	11.9	11.9	11.9	11.9
	ρ_b (g cm ⁻³)	1.40	1.57	1.26	1.63	1.50	1.50	1.50	1.38	1.38	1.38
	C_{org} (g kg ⁻¹)	12.2	12.2	18.05	10.5	3.46	2,03	2.03	1.19	1.19	1.66
		Layer/Structure									
	Parameter	r	Δ	IF	РР	E	BLI	BUI	BTICI	BTICII	IC
			0-28 cm		28-38 cm	38-50 cm	50-70 cm	70-90 cm	90-120 cm	120-140 cm	140-200 cm
MSW	Soil										
	$\theta_r (\text{cm}^3.\text{cm}^{-3})$	0.0002	0	0.0324	0.105	0	0.0006	0	0	0	0
	θ_{s} (cm ³ .cm ⁻³)	0.410	0.426	0.467	0.455	0.380	0.370	0.370	0.370	0.300	0.300
	α (cm ⁻¹)	0.022	0.013	0.030	0.042	0.045	0.027	0.049	0.020	0.045	0.032
	n	1.20	1,20	1.18	1.10	1.17	1.12	1.09	1.09	1.10	1.10
	K _s (cm day ⁻¹) Solute	10.6	7.2	489	6.0	14	9.0	7.0	3.8	8.0	4.0
	K_d (L kg ⁻¹)	1.26	1.42	1.37	0.90	0.42	0.35	0.35	0.25	0.25	0.25
	μ (day ⁻¹)	0.0282	0.0282	0.1560	0.0301	0.0062	0.0065	0.0065	0	0	0
	D _L (cm) Basic	4	4	4	11.9	11.9	11.9	11.9	11.9	11.9	11.9
	ρ_b (g cm ⁻³)	1.53	1.55	1.34	1.51	1.50	1.50	1.50	1.38	1.38	1,38
	Corg (g kg ⁻¹)	12.4	12.0	13.7	10.35	3.56	2.74	1.74	1.53	1.53	1.54
		Layer/Sti	ructure								
	Parameter	Г	Δ	IF	PP	Е	BTI	BTII	BTICI	BTICII	IC
			0-32 cm		32-43 cm	43-50 cm	50-70 cm	70-90 cm	90-120 cm	120-140 cm	140-200 cm
	Soil										
	$\theta_{\rm r}$ (cm ³ .cm ⁻³)	0.0002	0	0	0.105	0	0.0006	0.0006	0	0	0
	θ_s (cm ³ .cm ⁻³)	0.410	0.437	0.432	0.455	0.380	0.370	0.370	0.370	0.300	0.300
	α (cm ⁻¹)	0.0385	0.0134	0.0134	0.025	0.018	0.024	0.010	0.020	0.072	0.083
	n	1.14	1,21	1.18	1.10	1.17	1.12	1.12	1.09	1.09	1.10
CONT	K _s (cm day ⁻¹) Solute	14.0	13.3	1889	2.0	42	2.8	3.2	3.7	3.7	6.0
	K. (1. ko-1)	1.10	1.26	1.22	0.85	0.42	0.35	0.35	0.25	0.25	0.25
	u (day-1)	0.0211	0.0211	0.0686	0.0239	0.0062	0.0065	0.0065	0	0	0
	$D_L(cm)$ Basic	4	4	4	11.9	11.9	11.9	11,9	11.9	11.9	11.9
	0. (g cm-3)	135	1.63	1 27	1.70	1.50	1.50	150	1 38	138	1.38
	Corg (g kg ⁻¹)	9.4	9.7	10.55	7.55	4.15	2,36	2.36	1.72	1.59	1.60

 θ_r - residual water content, θ_s - saturated water content, α and n - van Genuchten shape parameters, K_s - saturated hydraulic conductivity, K_d - sorption coefficient, μ - isoproturon degradation rate in liquid phase, D_L - longitudinal dispersivity, ρ_b - bulk density, C_{og} - organic carbon content.