

November 2014

Pesticide exposure and effects on invertebrates and ecosystem functioning

Jes J Rasmussen

Workshop aims and content of talk

I. Major transport routes for pesticides

I. Frequency is similar while max. concentration is significantly higher in small streams

	Large streams		Small streams	
	Frequency	Concentration	Frequency	Concentration
	(%)	Max (µg/I)	(%)	Max (µg/l)
Isoproturon	41	0.13	48	2.1
Diuron	37	0.073	29	0.36
Bentazon	25	0.028	37	1.2
Fenpropimorph	0	0	3	0.11
Dimethoat	2	0.034	4	0.12

Examples of frequency and maximum concentrations of pesticides in two stream types from the Danish Monitoring Programme (NOVANA)

All sampling conducted with regular time intervals and independent of rain events!

I. Importance of precipitation events for transport of pesticides

I. Experimental study in a small tile drained field plot (ca. 280[°] m²)

 Application of three different pesticides in normal doses on the field followed by irrigation with 10 mm within 1 hour

I. Drain concentration

Log Kow = -0.46

Jes J Rasmussen

Jes J Rasmussen

SLU November 2014

I. Drain concentration

Jes J Rasmussen

I. Drain concentration

I. Sediment transport – important for adsorption of pesticides

>

AARHUS UNIVERSITY

Forest catchment

Agricultural catchment

- High particle transport in agricultural streams
- Particles originate from bank erosion and runoff
- Also DOM transport is higher in agricultural catchments
- Adsorption of pesticides to (organic) solids prolongs their half lifes

I. Danish experience

- 10 control streams + 10 agricultural streams
- Base flow samples + peak flow
 samples + suspended sediment
 + sediment
- Water samples analysed for 75 compounds
- Particle samples analysed for 59 compounds

Rasmussen et al. (in prep.)

Rasmussen et al. (in prep.)

I. Summary on Exposure

- A rather high amount of compounds need to be included in the analyses of pesticides in stream water to reach proper exposure characterisation
- Not only current use products should be included but also compounds used in the past could be important – especially insecticides
- Analysing pesticide occurrence in water and sediments with high temporal resolution would be beneficial to increase the linkage to the effect side (Data from Sweden?)
- How toxic is the sediment fraction is it just historical information or still causing impact?

15/28

II. Invertebrate communities

Beketov & Liess 2012

II. Invertebrates species-area relationship

Wiberg-Larsen, 2010

Jes J Rasmussen

SLU November 2014

Important habitats for macroinvertebrates

Back water with organic

Leaf packs

Stones/gravel

Dead wood

Roots

Jes J Rasmussen

II. Invertebrates

The floodplain
 is important
 for many adult
 insects

Figure 6.2 Lateral dispersal of adult caddisflies from two very different systems. A: Small forest brook on northern Funen, Denmark [14]. B: Detroit River and Lake St. Clair, Canada [16]. Note the difference in scale for individuals caught in traps, and the dispersal distance.

Many males of caddisflies perform a special flight – swarming – to attract females. Patterns and places of swarming are specific for each species.

II. The intermediate disturbance hypothesis

Jes J Rasmussen

SLU November 2014

21/28

II. Food web structure

b а d С metals N pН Hogsden & Harding, 2013

- Mining a)
- Naturally high metal b)
- Naturally acidic C)
- Circumneutral d)

AARHUS UNIVERSITY Jes J Rasmussen Pesticide effects on food chains — in theory

- > Fewer links in the food chain
- > Shorter food chains
- > More generalist species and fewer specialists
- > Fewer species in the food chain
- > Elimination of species that are particularly sensitive to pesticide contamination
- More stable food chain (highly connected species are less vulnarable to disturbance)

1. In-stream physical habitats removed and maintained 2. Riparian vegetation removed and maintained **3. Chemical pollution** 4. Many more factors...

Selection for generalist traits Shorter food chain with fewer links and fewer species

II. Danish experience

AARHUS UNIVERSITY

%SPEAR abundance is lower in streams that are physically hampered

Rasmussen et al. 2012, *Environ. Poll.* **164**, 142-149

Few SPEcies At Risk have strong influence on the final SPEAR score

Taxa	Physical indicator	P-value
	group	
Asellus aquaticus.	Homogeneous	0.048
Pisidium sp.	Homogeneous	0.077
Tanytarsini	Homogeneous	0.087
Baetis rhodani	Heterogeneous	0.063
Dicranota sp.	Heterogeneous	0.034
Dugesia gonocephala	Heterogeneous	0.070
Leuctra fusca	Heterogeneous	0.083
Limnius volckmari	Heterogeneous	0.070
Silo spp.	Heterogeneous	0.010
Simuliidae	Heterogeneous	0.013

Rasmussen et al. 2012, Environ. Poll. 164, 142-149

AARHUS UNIVERSITY

So ... how to increase the ecological effect signal of pesticide exposure?

- Generalist traits respond (increase in abundance) to all types of recurring disturbances by humans
- SPEAR differentiates from other work on traits by implementing species sensitivities to pesticides
- More clear interpretations of pesticide effects in the field could be obtained by increasing the data quality of species sensitivities to pesticides
 - Can we establish some general rules and relationships that explain which factors (morphological) render species sensitive to pesticides?

Thank you for your attention!