Glyphosate residues in pre-harvest glyphosate treated cereal grains

Workshop on pesticide fate in soil and water in the northern zone

Sari Rämö, Research Scientist, M.Sc.

Picking of headlines

Glyphosate Herbicide Found in 14 Popular Beer Brands from Germany

- The Munich Environmental Institute found glyphosate readings between 0.46 and 29.74 micrograms per liter in 14 different popular beers.
- It is nearly 300 times more than the allowable limit of 0.1 micrograms in water.
- Posted on February 26, 2016 by Christina Sarich

http://naturalsociety.com/

. . . .

- Renewed call for bakers to end use of wheat sprayed with glyphosate
 - By Vince Bamford + Vince Bamford, 19th of July 2016
 - Campaigners are urging major UK bread manufacturers and supermarkets not to use flour from wheat sprayed with glyphosate immediately before harvest.

http://www.bakeryandsnacks.com/Ingredients/Glyphosate-Bread-firms-urged-not-to-use-flour-from-treated-wheat

Clarification of pre-harvest uses of glyphosate

In several north western European countries glyphosate can be applied before crop harvest <u>for weed control</u>, <u>to enhance ripening on non-determinate crops</u> to reduce crop losses, and <u>to help manage determinate crops</u> in wet seasons...

...the bulk grain sample must have <u>dried to a maximum of 30%</u> <u>moisture content</u>. At this point it is physiologically mature and the grain is filled, so glyphosate will not be translocated into the grain from the plant.

http://www.glyphosate.eu/system/files/sideboxfiles/clarification_of_pre-harvest_uses_of_glyphsate_en_0.pdf

Facts about pre-harvest treatment with glyphosate in Finland

- Spraying must be done at least ten days before harvesting
- Moisture of grains must be below 30 %
- For destroying weeds, mainly couch grass
- Not allowed for grains used as seed or food
- Allowed for rape and turnip rape
- Allowed for oats and barley as animal feed
- Feed industry of Finland does not accept grains, which have been treated with glyphosate
- Treated grains may only be used as cattle feed in own farm or directly sold to other farms

https://kasvinsuojeluaineet.tukes.fi/

Glyphosate and AMPA residues in grains

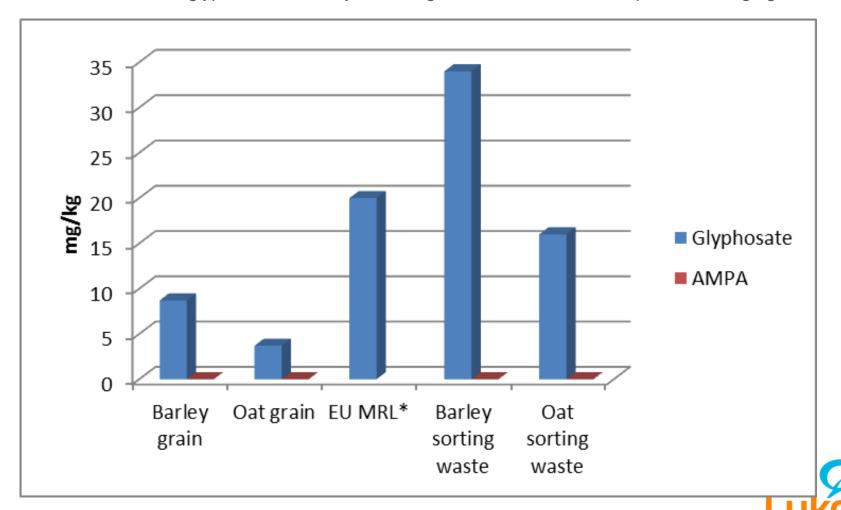
- 1. Experiment: October 2015
- 2. Preliminary analysis: January 2016- poster presentation in EPRW 2016: June 2016
- 3. Matrix match calibration for barley: April 2016
- 4. Residue analysis in barley and oats: June 2016

Experiment

- We studied if pre-harvest treatment will lead to any glyphosate and AMPA residues in the grain yield of barley and oats.
- An experimental plot growing oats and a plot growing barley were sprayed with Roundup Bio at the label dose of 3.0 l/ha (glyphosate 360 g/l).
- The moisture of oat and barley grains was 26.5% and 38.7%, respectively, on the spraying day.
- Grains from both untreated and treated plots were harvested for glyphosate and AMPA analysis ten days after spraying.
- The harvest moisture of oats was 18% and barley 21%.

Preliminary analysis

- Sample matrix: barley, oats and their sorting waste
- Grains were extracted with water by blender
- Crude extract was partitioned with methylene chloride.
- Calibration standards were diluted with harvesting waste extract for residues in field water
- Calibrants and the aliquots of the water phase of extracts were derivatized with 9-fluorenylmethylchloroformate (FMOC-CI)
- FMOC-derivatives of analytes were identified and quantified with MRM technique by Waters Acquity UPLC Xevo TQ MS – instrument
- LOQ: 0.5 mg/kg


MRM reactions of ES+ ionisation:

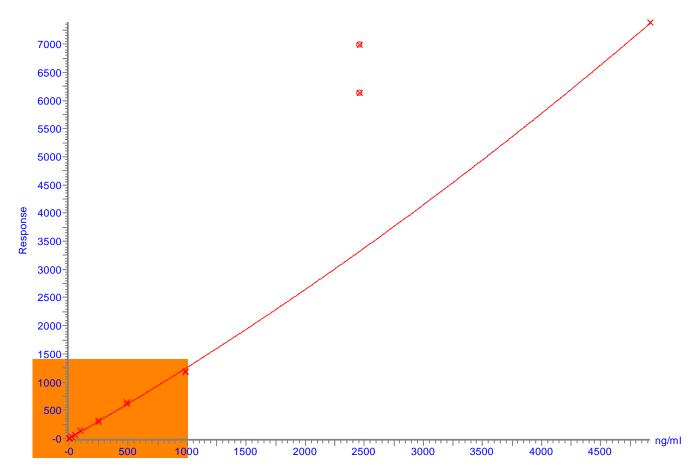
IS = Internal standard, * = recovery standard of method, Q= Quantitative ion

Compound	Mother (m/z)	Daughter (m/z)	Dwell (s)	Cone (V)	Coll (V)
Glyphosate-FMOC	392.1	87.93 (Q)	0,019	20	16
	392.1	214	0,019	20	9
(IS) 13C2,15N- Glyphosate-FMOC	395.1	90.99 (Q)	0,019	20	16
	395.1	217	0,019	20	12
AMPA-FMOC	334.1	112	0,019	20	13
	334.1	156 (Q)	0,019	20	8
(IS)13C,15N-AMPA- FMOC	336.1	114	0,019	20	12
	336.1	158 (Q)	0,019	20	8
Glufosinate-FMOC*	404.1	136 (Q)	0,019	20	20
	404.1	182	0,019	20	16

The concentrations of glyphosate and AMPA in barley and oat grains along with their sorting wastes.

* The MRL value for glyphosate in barley and oat grains for human consumption is 20 mg/kg.

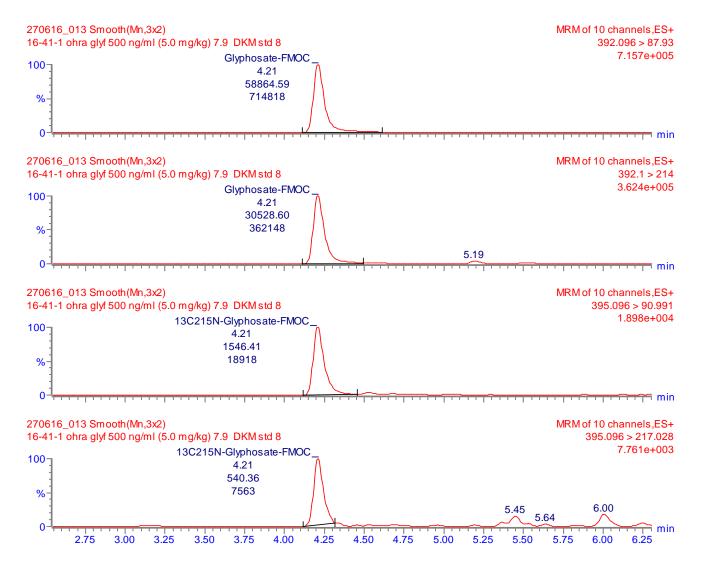
Estimation of reliability of the results


- No recovery tests were done in January
- => Matrix matched calibration : April 2016
- Grains were storaged 3 months in room temperature before preliminary analysis
- Were original concentrations even higher?
- => Subsamples were storaged in freezer
 - 3 months in room temperature : 20 °C January 2016
 - 6 months in room temperature : 20 °C April 2016
 - Residue analysis in barley and oats: June 2016

Glyphosate calibration curve for field water

Compound name: Glyphosate-FMOC Coefficient of Determination: R² = 0.999385

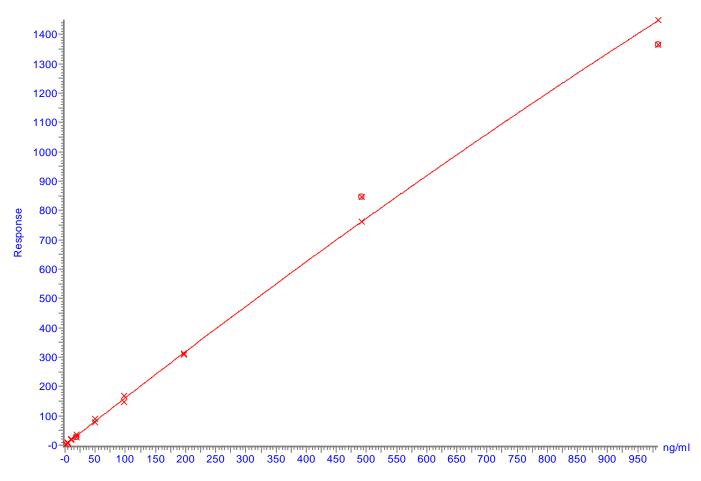
Calibration curve: 6.00604e-005 * x² + 1.20239 * x + 0.201669 Response type: Internal Std (Ref 4), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None



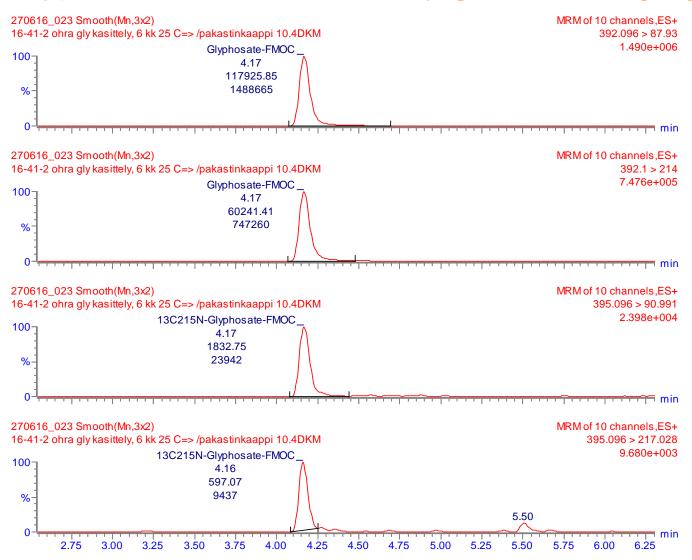
Matrix match calibration for barley

- Untreated barley grain were spiked with glyphosate and AMPA
 - 0.01 10 mg/kg
 - 0 mg/kg spiked with water
- Grains were extracted with water by blender
- Extract was used as itself or partitioned with DCM
 - Use DCM, if extract should storage for further use
- The aliquots of crude extract or the water phase of extract were derivatized as in preliminary analysis
- FMOC-derivatives were analyzed as in preliminary analysis
- LOQ 0.1 mg/kg (LOD 0.01 mg/kg)

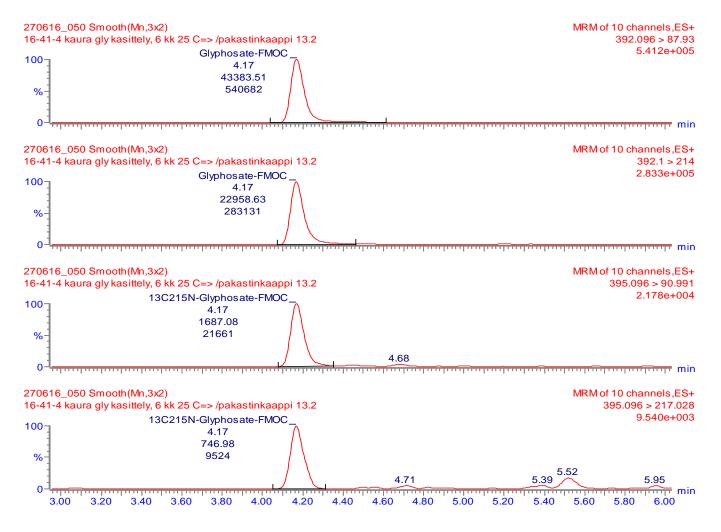
Glyphosate-standard in barley 5.0 mg/kg



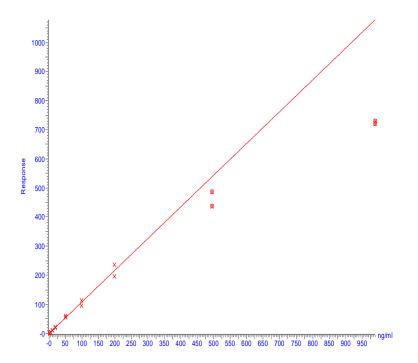
Glyphosate calibration curve for barley

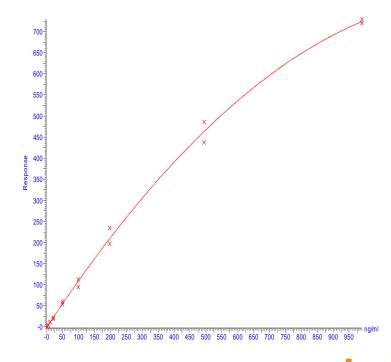

Compound name: Glyphosate-FMOC Coefficient of Determination: R^2 = 0.998551

Calibration curve: -0.000155447 * x^2 + 1.62217 * x + 0.87404 Response type: Internal Std (Ref 4), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None



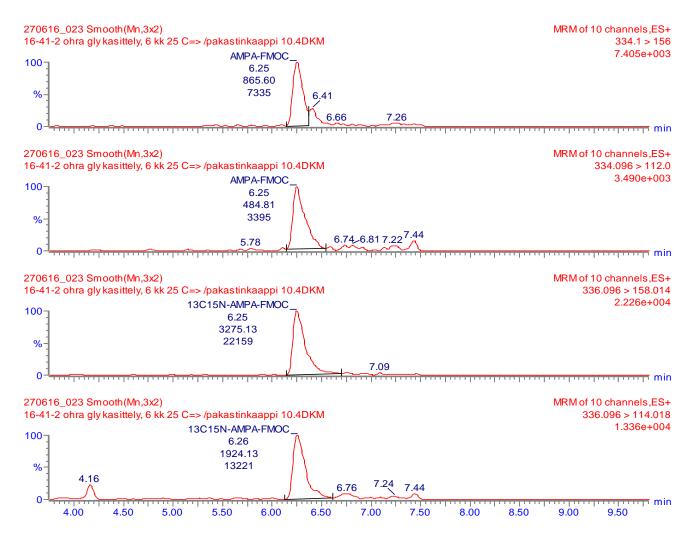
Glyphosate in treated barley grain: 8.6 mg/kg


Glyphosate in treated oat grain: 3.1 mg/kg



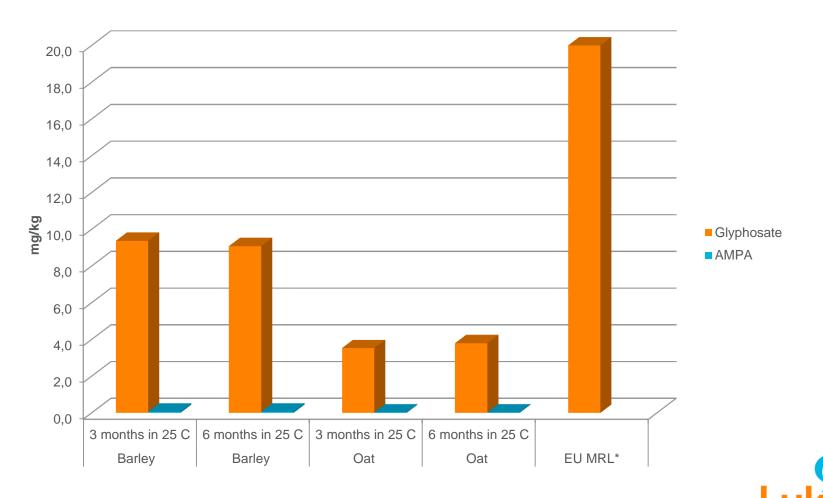
AMPA calibration curves for barley grain

Compound name: AMPA-FMOC
Correlation coefficient: = 0.995835, r/2 = 0.991688
Calibration curve: 1.08939 * x + -0.562297
Response type: Internal Std (Ref 3), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Avist trans: None



Compound name: AMPA-FMOC
Coefficient of Determination: R*2 = 0.996122
Calibration curve: -0.00041739 * x*2 + 1.14517 * x + -0.823429
Response type: Internal Std (Ref 3), Area * (IS Conc. / IS Area)
Curve type: Znd Order, Origin: Exclude, Weighting: 1/x, Avis trans: None

NATURAL RESOURCES INSTITUTE FINLAND


AMPA in treated barley grain: < 0.1 mg/kg

Residues with matrix matched calibration for barley

* The MRL value for glyphosate in barley and oat grains for human consumption is 20 mg/kg.

Conclusions

- Calibrations for both field water and barley grain worked well
- Residues were not detected in untreated grains
- Residues were quite stable:
 - no breakdown in room temperature
- AMPA residues were < LOQ both in barley and oat grains
- Glyphosate residues were higher in barley than in oat grains
 - Higher moisture will explain it
 - < 30% moisture will not prevent residues</p>
- Is ten days period between spraying and harvesting too short?
- Was the spraying time so unusual (October)?

Method references

- Alferness P.L. and Wiebe L.A. (2001), J.AOAC Int.84:823-846
- Sancho, J., Lopez, F., Hernandez, F., Hogendoom, E. and van Zoonen, P. (1994), J.Chromatogr.A, 678, 59-67
- Ibanez, M., Pozo, O.J., Sancho, J.V., Lopez, F.J. and Hernandez, F. (2005), J.Chromatogr.A, 1081, 145-155
- Ferencik M. 2013, Personal contact by e-mail 29.1.2013

Acknowledgements

- Pentti Ruuttunen about planning of the experiment
- Pentti Ruuttunen and Leena Ruokonen about spraying the fields
- Niko Jalava and Tuula Viljanen about harvesting grains
- Sari Rämö about residue analysis
- Jaana Uusi-Kämppä, the project leader of GLYFOS II

Thank you!

