An example how to combine glyphosate sorption and degradation parameters to soil data in scenario simulation

> Katri Siimes Finnish Environment Institute (SYKE) Uppsala 8.9.2016 Katri.siimes@ymparisto.fi

Content

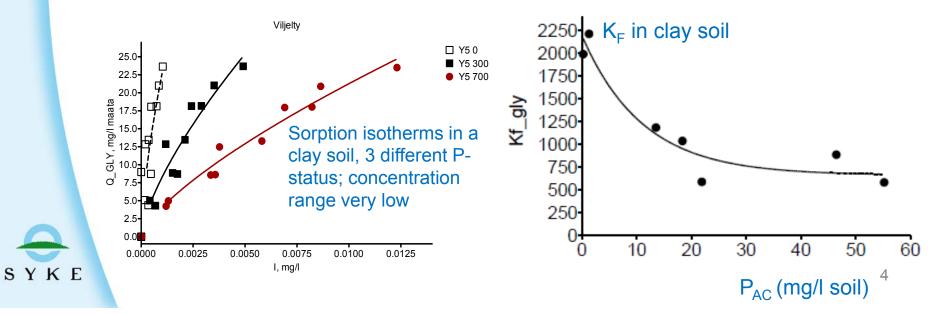
Background

- Introduction
- Glyphosate sorption and degradation
 - Sorption and soil properties
 - Degradation
 - Our observations in modelling studies
 - Literature: Relation between sorption and degradation

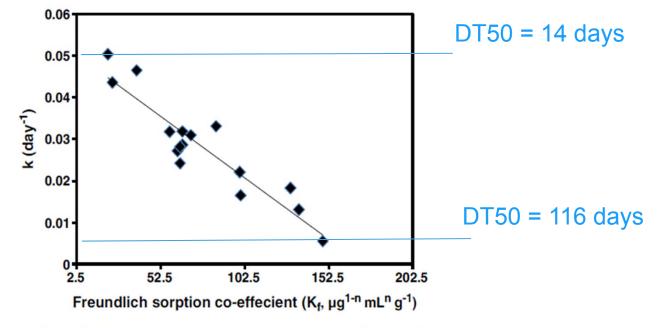
Used method

- different degradation rates for adsorbed and dissolved phases
- the same rates for different soils, but the proportions of dissolved and adsorbed phase vary with soils
- Sorption parameters related to soil P-status
- Discussion
- Benefits and uncertainties of the used method

Introduction


SYKE

- Jaana presented yesterday the study of glyphosate fate in Southern Finnish conditions.
- Simulations are supposed
 - to extend and extrapolate measured data
 - to enable scenario testing (e.g. different application patterns)
- But... How to parametrize the scenarios?
 - (Hydrology parameters from Footprint + selected adjusted values based on previous calibrations)
 - Sorption and degradation parameters the most essential compound specific parameters in fate simulations
 - K_F has been determined for several Finnish soils and shown to be linked with soil Phoshporus status in Finnish soils
 - No lab-studies on degradation in Finnish soils; a few field experiments => estimated dissipation rate


Background: Glyphosate sorption into Finnish soils

- Glyphosate sorption coefficient is related to Finnish measure for the crop available P (P_{AC} = acid ammonium acetate extracted Phosphorus)
- => K_F can be estimated from P_{AC}
 - P_{AC} is easily available, because farmers are supposed to measure it every 5 years (as a part of environmental substitute program)
- E.g. Uusitalo 2014 (non-published)

Background: Adsorbed glyphosate is not readly bioavailable

- Glyphosate dissipation is due to microbiological degradation.
- Adsorbed glyphosate is not as bioavailable as dissolved glyphosate.
 >Degradation and adsorption are correlated.
- E.g. Ghafoor et al. 2011. Science of the Total Enviroment 409: 1900-8.

Fig. 2. Relationship between the degradation rate constant k (day⁻¹) for glyphosate and the Freundlich sorption coefficient ($K_6 \mu g^{1-n} m L^n g^{-1}$).

Degradation rates belong to the most essential parameters in simulations, when glyphosate fate after spring and fall applications should be compared

- In MACRO-model degradation rate (at ref. T and moisture)
 - separately for each 4 phases (micro & macropores; adsorbed and dissolved)
 - But often the same value is used for all phases (FOCUS + no data)
 - Different values can be given to each soil layers, but decreasing with depth can be obtained according to FOCUS-advices
 - Temperature decreasing and soil drying decreases the rate
 - In our inverse modelling study, only one rate parameter was varied (surface layer, same value for all phases) and all other rate parameters were calculated from it.
 - The goodness of fit values (Nash-Sutcliffe) were calculated for each simulation by comparing observed values and simulated values.

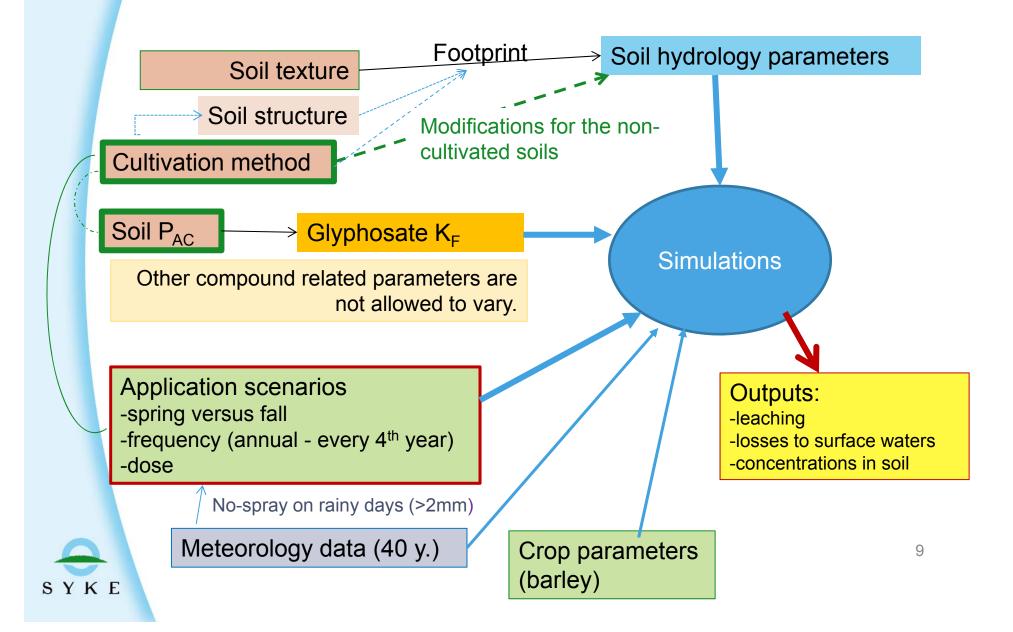
Background: An observation from our simulation studies

We used **inverse modelling to calibrate** glyphosate **degradation rate** (previously calibrated hydrology).

• We had data from two Finnish experimental fields

We obtained **different degradation rates depending on the** object function

- when based on concentrations in soil => slow degradation
- When based on concentrations in surface runoff and in drainage water => quick degradation


Results = Method Soil P-status => glyphosate K_F => DT50

- Different degradation rates for glyphosate in adsorbed and in dissolved phases (but still equilibrium sorption)
 - The simulation of Toholampi "validation data set" improved (DT50dissolved = 10 days (= DT50water); DT50adsorbed = 100 days)
 - on-going testing with Kotkanoja data
- The same degradation rates (at reference conditions) in all soils, values separately for dissolved and sorbed phases (depth, T and moisture effect according to FOCUS).
 - Perhaps not valid assumption into different soils, but soils in scenario simulations are rather similar
- =>

SYKE

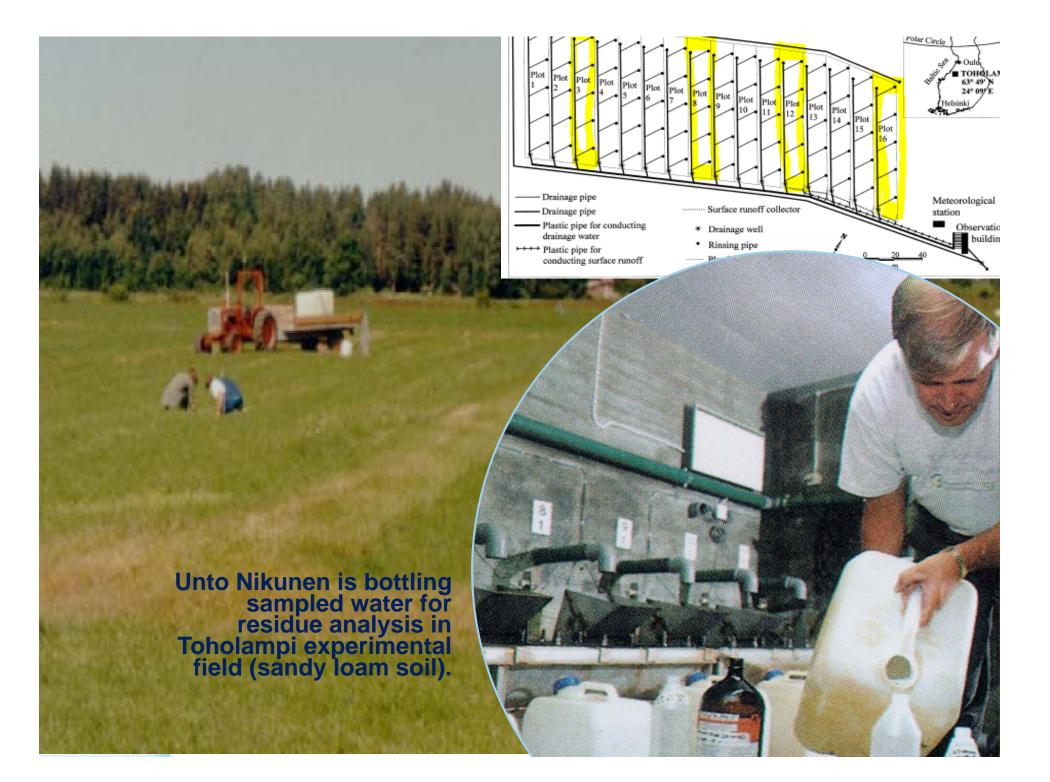
- Sorption coefficient determines the total degradation by dividing glyphosate to the fast degradable (dissolved) and slowly degradable (adsorbed) phases
- The KF is calculated from soil P_{AC}
 - Freundlich exponent term not allowed to vary

Scenario parametrization

Discussion Benefits and uncertainties

- Separate degradation rates in adsorbed and dissolved phase improved simulation (in the calibration site).
- The method seems to have sensible bases and it decrees the number of varying parameters in scenarios => easier to perform simulations
- However, the method has not been tested against measured degradation data.
- Could the method be used in other areas?

SYKE


- The correlation between glyphosate Freundlich sorption coefficient and P_{AC} has been just curve fitting. Risto and Pirkko used different soils and different concentration areas and got a different curves.
 - The P_{AC} suits to describe the P-status in Finnish soils (young soils, usually low pH and only minor part of soil total P is available for crops) but other P-status measures are used in other countries (not directly transformable)

The study is on-going.

Tips and warnings are welcome! Thank you!

katri.siimes@ymparisto.fi

