Pesticide monitoring activities in Finnish surface waters Quick history and on-going studies

Katri Siimes Finnish Environment Institute (SYKE) Uppsala 8.9.2016 Katri.siimes@ymparisto.fi

S Y K E

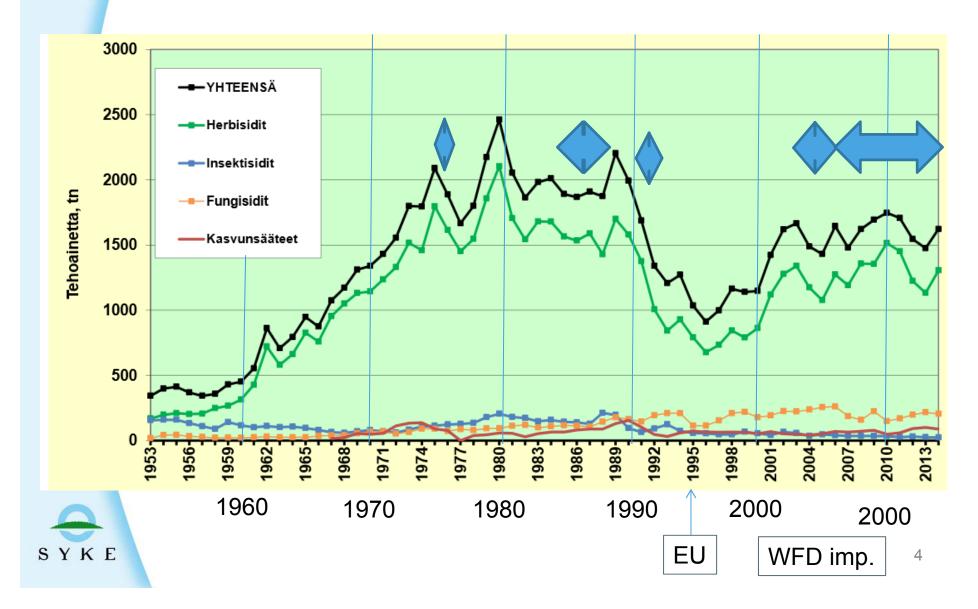
About the roles of Finnish institutions – (pesticides)

- **Tukes** (The Finnish Safety and Chemical Agency) is the responsible authority in pesticide registration (and in sales statistics).
- **LUKE** (Natural resources institute Finland; previously MTT):
 - Experience in research projects in experimental fields
 - Including "leaching fields", where all surface runoff and drainage water are measured and sampled
 - The authority in pesticide usage statistics for EU (only 2013)
- **SYKE** (Finnish Environmental Institute)
 - Experience in national screenings of hazardous chemicals (but not a responsible authority)

=> SYKE has carried out / co-ordinated national screenings in project based funding

• Participating in some research projects

Content


- Short history of pesticide "monitoring" studies before 2000
- Monitoring in 2004 and 2005 to gain experience before later monitoring (required by WFD)
 - Many of the WFD / EU priority substances are (former) pesticides;
 We studied them + other compounds (tot. 98-> compounds)
 - 2004: temporal resolution in intensive sites + sampling site within the drainage basin
 Ralf Shäfer sampling
 - 2005: spatial resolution (+sediments)

Ralf Shäfer sampling in ditches in 2005

- Practicing year 2006 (but different laboratory, and less compounds analysed)
- Monitoring in 2007-2014 (nothing in 2015)
- On-going monitoring in 2016

Pesticide "monitoring" studied in Finland (on the top of sale statistics)

"Monitoring" before 2000

History - before year 2000

1970's:

- Single grap samples from 19 rivers (big ones) in October 1976
 - Phenoxy acids (and chlorinated phenols) analyzed
 - High concentrations $(6 8 \mu g/l)$ of 2,4-D and 2,4,5-T e.g. in r. Aura, which was used as drinking water supply in that time
 - The airplane sprayed herbicides on young forests the probable reason for high concentrations in Eastern Finland.
 - MCPA detected in 5/19 sites; observed concentrations $0.2 1.6 \mu g/l$.
 - Kiviranta & Miettinen 1976.

1980's

- Grap samples from river Aura (n=18) and from a small research catchment Löytäneenoja (n=15) in growing seasons 1985 – 1987.
 - 19 analyzed compounds (LQ $0.001 0.1 \mu g/l$ depending on chemical)
 - The concentrations of 4 compounds were only 5-100 times lower than LC50 values in literature (malationi, fenitorotioni, propaklori, dinosebi).
 - (+accroding to current knowledge, the concentrations of dimethoate and terbutylazin were not acceptable.)
 - MCPA the most frequently detected
 - Rekolainen et al. 1988. (In Finnish)

History - before year 2000

1990's

- Monthly grap samples in ten rivers (big ones) in summers 1991 and 1992 (n=54)
 - Analyzed E.g. Phenoxy acids (like MCPA), atrazine, simazine, bentazone (LQ for MCPA 0.1 µg/l)
 - Phenoxy acids frequently detected.
 - Rekolainen and Hirvi suggested that they are not found, if agricultural land use in the catchment area is <15% or the size of the stream > 44 m³/s.
 - Hirvi and Rekolainen 1995.

"Monitoring" before full implementation of water framework directive (WFD)

2004: intensive areas (1+5) -temporal vatiation -where to sample within the catchment 2005: statistically selected sites -spatial variation -sediments

2006: How to organize monitoring with regional authorities.

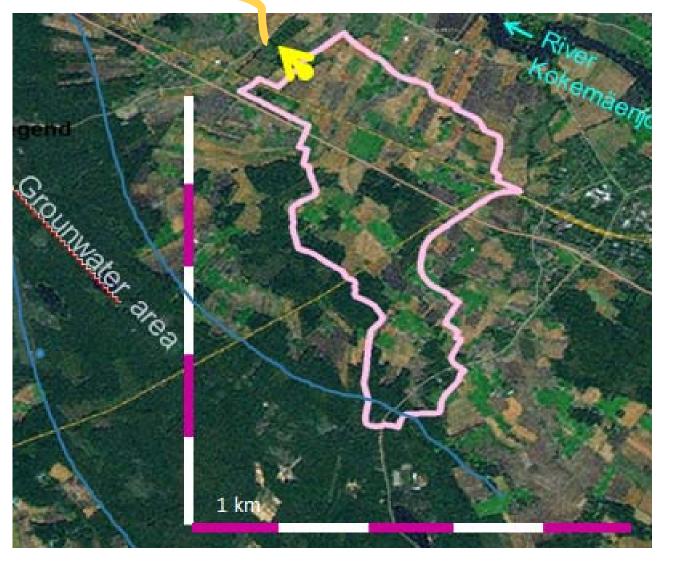
Sites in 2004 -intensively cultivated (expected high load sites) -analyses of 98 compounds (EU priority substances and other pesticides/metabolites)

Table I. Sampling sites of pesticide screening in Finnish surface waters in 2004

able it sampling sites of pesticide selecting in trainish samale waters in 2004						
code	site	catchment area	agricultural land use %	main crops	sampling time	n
Research catchment (L)						
LI	continuous	5.6 km ²	>50%	cereals, sugar beet, potato, hay	May-Oct.	21
12	manual	5.6 km ²			May-Oct.	17
В	up-stream ditch	ca 2 km ²			June, July	2
Monthly sampling						
ml	stream	ca 85 km ²	>35%	cereals, hay, vegetables	June-Oct.	5
m2	upstream from ml	ca 15 km ²	about 20%		June-Oct.	5
m3	big open ditch	ca 5 km ²	>60%	cereals, hay, carrots	June-Oct.	5
m4	subsurface drainage	<3 km ²	(100%)	cereals, turnip rape	June-Oct.	5
m5	stream	56 km ²	13%	hay, potato, cereals	July, Aug.	2
m6	ditch/stream	<3 km²	(?)	strawberries	June, Sep.	2
Rivers subcatchments						
rl	Porvoonjoki	1 270 km ²	31%	m1, m2	Sep.	
r2	Vantaanjoki	l 680 km ²	24%	m1, m2	Sep.	
r3	Paimionjoki	1 100 km ²	43%		Sep.	
r4	Aurajoki	870 km ²	37%		Sep.	
r5	Kokemäenjoki	27 000 km ²	13%	L, m3, m4	Sep.	
r6	Lestijoki	1 400 km ²	10%	m5	Sep.	

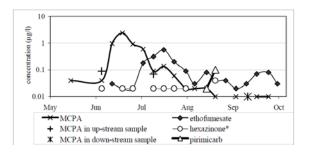
Figure I. Sampling sites in 2004

Lepsämänjoki, a tributary of river Vantaa -monthly sampling site in 2004-2005, two sites Upper (15 km2) and middle (85 km2)



SYKE

Löytäneenoja – intensive sampling site 2004-2005: weekly samples (both time based composite samples and grap samples)



Results from the monitoring in 2004

- Pesticides are found in water
- Concentrations are at their highest after application period (Log.scale in the figures)
- The level of concentrations was as high / higher in downstream sites (as in upstream sites) (pesticide usage distribution?)

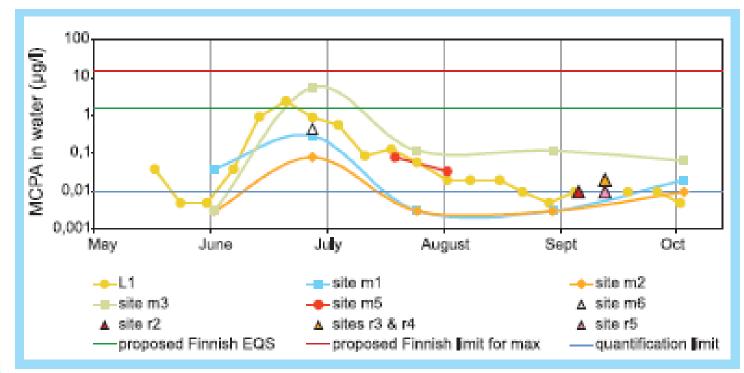


Figure 6. MCPA concentrations in the sampling site

SYKE

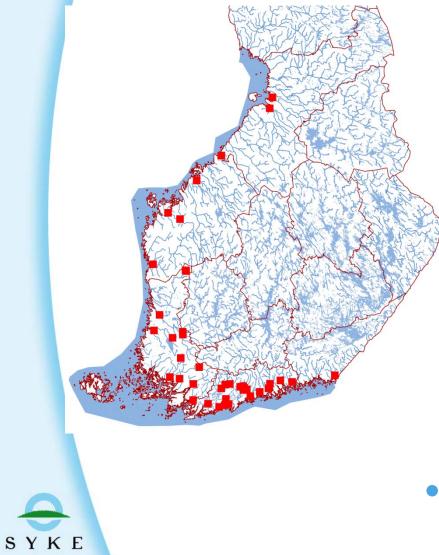
Screening in 2005

- 35 sites among 2nd order streams
 - o agricultural land use
- 5 reference sites (agricultural land use <10%)
- Grap water samples twice per site + sediment

142. L.V.S

2005 Results:

-detected on average 6 compounds in agricultural sites (June & July) and 3 in reference sites -In sediment: atrazin, endosulfan and procloraz



Monitoring within MaaMet-project 2007-2014

Monitoring in 2007 - 2014

Annually 5 – 15 sites

- different sites in dif. years
- 40 sites / 8 year period
- + additional samples (<3 sampling times/year) Sites in "agricultural areas" (in Finnish scale)

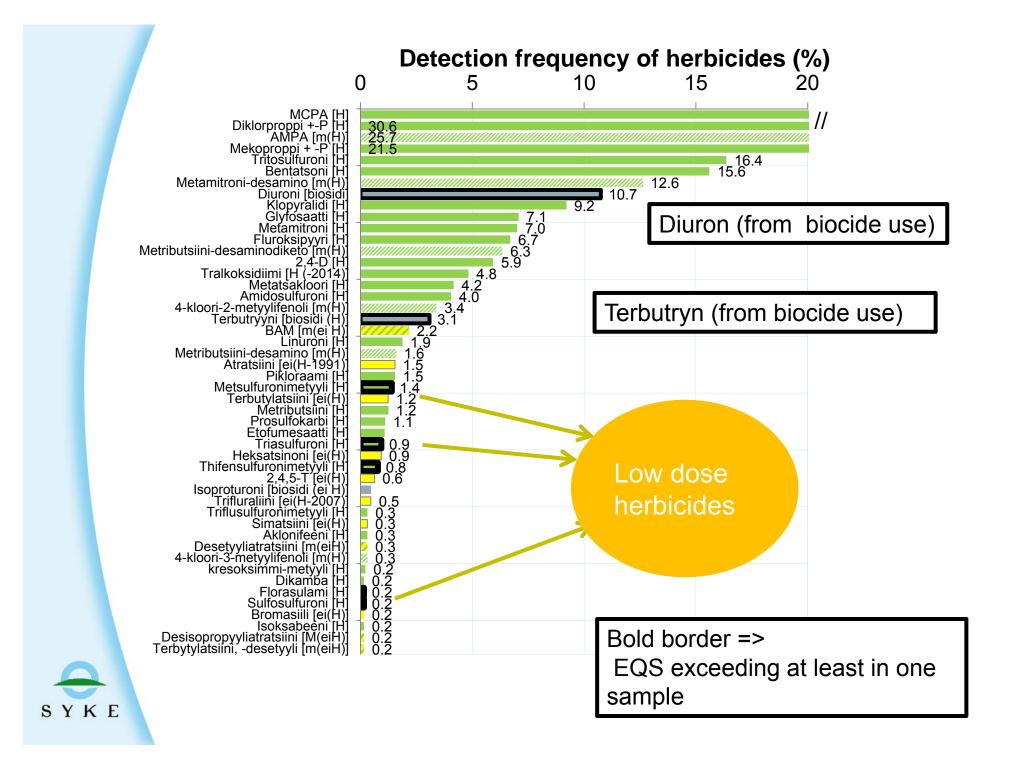
Grap surface water samples

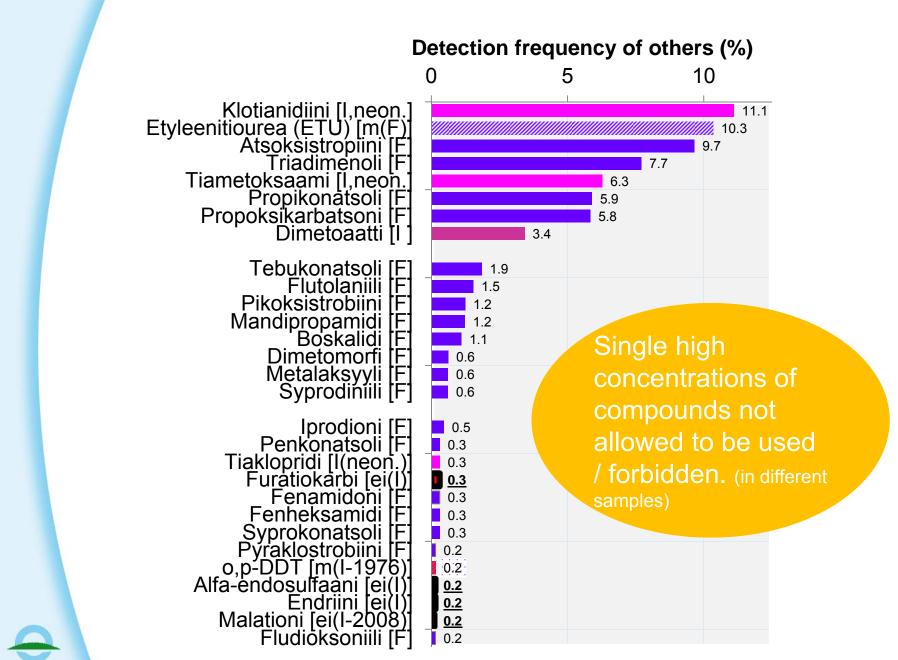
- Monthly May 2007 April 2008
- 1 or 2 times / month in May-Nov. 2008-2014

Multiresidue methods

- Ramboll Analytics in Lahti
- Increasing number of analysed compounds (150 - >200), decreased LOQ-values
- A few other analysis, like glyphosate, ETU, tribenuron-methyl
- Results are in the database (open data) in SYKE (but in Finnish)

Results 2007 - 2014


Detection freqency


- No pesticides detected in 1/3 samples
- At least 10 compounds detected in 5% of samples; these sampling sites were in water bodies, which ecological classification was lower than good.
- The most often detected compounds were those having the highest sales
 - except glyphosate (not detected that often) and neonicotinoids (more often)

Concentrations

- Only a few exceedings of EQS-values (Environmental Quality Standard) or similar reference value based on ecotoxicology
- Low-dose herbicides were the only group of compounds, where exceedings were clearly related to agricultural use
- The others exceedings: biocide-use and single detections of legacy compounds

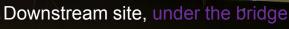
Differences in surface water monitoring between Nordic countries

- E.g. in Sweden and in Norway
 - monitored in small research cathcments with known pesticide usage
 - volume-based / time-based (or more sophisticated) sampling methods.
- In Finland (2007-2014)
 - Part of the sampling sites changed annually
 - Most of the sites had catchment area >500 km²
 - Information about pesticide usage in the upper catchment area was not/seldom available

No monitoring in 2015,

but screening of WFD watchlist compounds (candidates for priority substances)

- This list includes e.g. neonicotinoids
 - But also e.g. hormones and drags, which concentrations were more often too high.


Monitoring in 2016 in Savijoki (tributary to river Aura)

The stream selected due to other on-going studies e.g. gypsum study; farmer interviews Sampling in the two sampling points (upstream and downstream) water samples every 2 weeks (grap & time-pr. composite samples) passive samplers; sediment samples

km

Upstream site

Thank you!

katri.siimes@ymparisto.fi

