Assessing pesticide leaching under climate change: The role of climate input uncertainty

<u>Karin Steffens¹</u>, Mats Larsbo¹, Julien Moeys¹, Nick Jarvis¹, Erik Kjellström² and Elisabet Lewan¹

¹Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden, karin.steffens@slu.se, Tel: +46 (0)18 67 3849 ²Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Aim

... to assess the role of climate input data uncertainty in predictions of pesticide leaching under climate change and its importance relative to the parameter uncertainty of the pesticide leaching model.

A detailed analysis of the sources of uncertainty is required for risk assessments in order to obtain a suitable base for policy and decisionmaking.

Methods - Step 2: 30-year predictions

Predictions with a modified version of MACRO5.2^{3,5} were made for a heavy clay soil in South-West Sweden (Lanna) (Fig. 1) with stable macropores and high risk for pesticide leaching losses.

Daily data (1970-1999) from a weather station within the agricultural region around Lanna (Fig.1) were used to represent present climate conditions. The future time series were generated by perturbing the observed data based on monthly change factors for temperature, precipitation and solar radiation for the period **2070-2099**. Wind speed and relative humidity were assumed unchanged in the future².

Fig. 1: Map of Sweden. The field site in Lanna (black circle) and the weather station (black star) representative for the agricultural region around Lanna (dark grey) are marked.

Climate input data

Change factors

Prediction scenarios

Hypothetical pesticides

The identified K_{oc}-values for bentazone were multiplied by a factor of 1, 10, and 50, respectively, to represent weakly, moderately and strongly sorbed pesticides.

Pesticide applications

Two periods: Spring: 1-16 May Autumn: 29 Sep-15 Oct Application on days with <2mm rainfall Same application date for present & future (all climate model projections) Constant yearly dose: 0.45kg/ha **Crop: winter cereals**

			Cimale	scena
-	Climate	e scenario	RCM	GCM
-	CS1		RCA3	BCM
	CS2		RCA3	CCSMS3
	CS3		RCA3	HADCM3Q
	CS4		RCA3	IPSL
	CS5	•••••	RCA3	ECHAM5
	CS6	•••••	RCA3	ECHAM5
	CS7	•••••	RCA3	ECHAM5
	CS8	•••••	RCA3	ECHAM5
	CS9	•••••	RCA3	ECHAM5
_				

Swedish University of **Agricultural Sciences**