Developing a MACRO meta-model for Swedish drinking water abstraction zones

Stefan Reichenberger¹, Mikaela Gönczi², Nils Kehrein¹, Sebastian Multsch¹, Nicholas Jarvis², Jenny Kreuger²

al., 2015)

¹ knoell Germany GmbH, 68163 Mannheim, Germany (contact: sreichenberger@knoell.com) ² Swedish Agricultural University (SLU), Uppsala, Sweden (contact: nicholas.jarvis@slu.se)

Introduction

- In Sweden farmers are legally obliged to apply to local authorities for permits for pesticide use if their land lies within a designated water abstraction zone.
- A standalone modelling tool developed by SLU (MACRO-DB) is available to facilitate risk assessment and decision-making in water abstraction zones.
- The tool, which is used both by local authorities (who make the decisions) and farmers/landowners and consultants, is based on the well-established leaching model MACRO 5.2 (Larsbo and Jarvis, 2003; Larsbo et al., 2005).
- Our aim is to develop a robust meta-model of MACRO-DB, as a fast and easy-to-maintain web-based tool for these risk assessments.

Explanatory variables

Table 2: Explanatory variables used in the CART procedure

'ariable	description	type	values
QG	quaternary geology	categorical	eskers, moraines, sedimentary rocks
ilt	silt content (%)	numeric	5-70 %
and	sand content (%)	numeric	20-90 %
lay	clay content (%)	numeric	5-30 %
EXT	texture class	categorical	1 (> 70 % sand), 2 (20-70 % sand)
IC	hydrological class	categorical	L, W, Y
OM	organic matter class	categorical	h (high), n (normal), u (undeveloped)
PPL	application season	categorical	spring, autumn, summer
ос	normalised Freundlich adsorption coefficient (L/kg)	numeric	3-10000 L/kg
)T50	degradation half-life in soil (d) at 20 °C and pF = 2	numeric	3-200 d
•			. – .

Objectives

The objectives of this study were to

- 1) create a large synthetic dataset of pesticide leaching with MACRO for a pilot region
- 2) implement, calibrate and validate a meta-model using the CART methodology (Breiman et al., 1984)

MACRO simulations

- 18720 leaching simulations were performed with MACRO 5.2 for a pilot region in Southern Sweden (SW Skåne; cf. Fig. 1).
- > 39 soil scenarios (defined by geological substrate, hydrologic class, soil texture and organic matter content),
- 1 climate (zone 1001 in Fig. 1),
- 1 crop (spring cereals)
- 3 application seasons
- 160 dummy compounds (combinations of Kfoc, DegT50 and Freundlich exponent).
- Simulation period: 26 years (6 years warm-up + 20 years evaluation period).
- Target variable: mean leaching flux concentration over 20 years at 2 m depth (PECgw).
- Finally, simulations were grouped into classes according to predicted leaching concentrations (Table 1).

Table 1: Grouping the 18720 MACRO simulation runs into leaching classes

mean	leaching	flux	conc.	(µg/L)	

broad classes	fine classes	min	max	nb runs (%
				•

Fig. 1: Soil map and climate zones of Skåne (Steffens et

Freundlich exponent

nt

numeric 0.7-1

Predictive capability

		cat_1	0	< 0.001	48.2
	A	cat_2	0.001	< 0.01	4.58
		cat_3	0.01	< 0.1	7.83
_	D	cat_4	0.1	< 1.0	10.4
	Ď	cat_5	1		28.9

Classification and Regression Trees (CART)

- CART (Breiman et al., 1984) is a group of decision tree learning methods.
 - Classification trees (CT): predicted outcome is a categorical variable
 - Regression trees (RT): predicted outcome is a numerical variable
 - CART decision trees are constructed top-down, by choosing a variable at each step that best splits the data. Finally, trees are "pruned" in an internal crossvalidation step.
 - CT is not applicable to our problem (meta-model predictions need to be scalable) with the application rate)
- Regression trees (RT)
 - Tree building is strictly based on variance: Groups (nodes) are split such that the variance between the daughter nodes is maximized. \rightarrow very transparent method
 - Complexity parameter (cp): if any split does not increase the overall R² of the model by at least cp, then that split is considered as not worth pursuing and not made. The default value of cp = 0.01 has been reasonably successful at "prepruning" trees, but it sometimes over-prunes, particularly for large data sets (Therneau et al., 2019).
 - Predictions: The predicted value of the target variable is equal to the mean of the group in which a data point ends up after going through the decision tree

Meta-model development

censored at - 6

Results and Discussion

- MACRO simulations yielded uneven distribution of leaching concentrations (cf. Table 1):
 - \succ 77 % of the data points in very low or very high range;
 - \succ few data points in the middle range (classes cat_2, cat_3 and cat_4).
- CART results
 - > performance better for logarithmic concentrations; however, data need to be censored (e.g. at 1.0e-06 or 1.0e-04 μ g/L)
 - For Koc = 10000 L/kg all PECgw < 1.0e-15 μ g/L \rightarrow values will be censored anyway. However, excluding the data points with Koc = 10000 L/kg did not increase overall performance.
 - Fraction of data points used for calibration: best predictions obtained for splitRatio = 0.67-0.75.
 - > Complexity parameter cp: Decreasing cp improved the prediction, albeit asymptotically. With cp = 1.0e-05 the trees are visually very complex, but still not too deep (max. 13 split levels)
 - including simulated percolation volume at 2 m depth (WWW) as additional explanatory variable did not have significant effect
 - comparison of 8 variants with logarithmic concentrations yielded only minor differences (Table 3; Fig. 3)
 - importance of explanatory variables: Koc >> DT50 >> nf > others
 - prediction of leaching class very good for cat_1 and cat_5, but poor for cat_2 \rightarrow related to number of data points in each class in the calibration dataset
- Discussion
 - Results too pessimistic because we could not use all 18720 simulations for tree building. \rightarrow need independent test data set Better choose random substance properties for meta-model development as opposed to regular grid (better exploration of parameter space)?

Fig. 3: Observed (i.e. simulated with MACRO) vs. predicted mean leaching concentrations. cp = 1.0e-05, splitRatio = 0.7, logarithmic concentrations. Top: censoring at -6. Bottom: censoring at -4 and exclusion of substances with Koc = 10000 L/kg.

Next steps

Create an independent test dataset by running new MACRO simulations with pseudo-random substance properties (e.g. drawn with Latin Hypercube Sampling).

- A tool (rCART) for meta-model development with CART was implemented in R, making use of the R package rpart (Therneau et al., 2019).
- rCART splits the data randomly into a calibration and a validation dataset (parameter splitRatio specifies the fraction of data points to be used for calibration)
- rCART was run for different values of cp and splitRatio (0.25-0.999), different ways of data censoring/truncation and logarithmic vs. nonlogarithmic leaching concentrations.
- Output for each CART run
 - \blacktriangleright figures: decision tree (cf. Fig. 2); scatterplot for prediction (cf. Fig. 3)
 - complete rpart results for the tree building
 - predictive performance measures: RMSE; R², r², PBIAS, fraction of correctly predicted leaching class (exact match of concentrations not necessary for decision-making tool)
 - list of outliers
 - \succ relative importance of explanatory variables (cf. Table 2)

References

- Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software. Monterey, CA. ISBN 978-0-412-04841-8.
- Larsbo M, Jarvis N (2003). MACRO 5.0 A model of water flow and solute transport in macroporous soil. Technical description. SLU, Dept. Soil Sci., Uppsala, 47 pp.
- Larsbo M et al. (2005). An Improved Dual-Permeability Model of Water Flow and Solute Transport in the Vadose Zone. Vadose Zone Journal 4, 398-406. DOI: 10.2136/vzj2004.0137
- Steffens K, Jarvis NJ, Lewan E, Lindström B, Kreuger J, Kjellström E, Moeys J. 2015. Direct and indirect effects of climate change on herbicide leaching – a regional scale assessment in Sweden. STOTEN 514, 239-249.
- Therneau TM, Atkinson EJ, Ripley B (2019). rpart: Recursive Partitioning and Regression Trees. https://cran.r-project.org/package=rpart

Table 3: Performance of different variants (logarithmic conc., cp = 1.0e-05, splitRatio = 0.7)

variant calibration						prediction						
censoring value	use percolation	include Koc =	variable importance (%)			fraction of correctly predicted leaching class (%)						
(lg µg/L)		10000	Кос	DT50	nf	R ²	cat_1	cat_2	cat_3	cat_4	cat_5	all 5
-6	no	У	46	27	7	0.973	95.9	42.4	70.2	72.6	95.5	88.7
-6	yes	У	45	26	7	0.972	96.3	45.1	70.1	73.9	95.1	89.0
-6	no	n	43	24	8	0.970	95.3	49.1	63.7	73.2	96.7	88.2
-6	yes	n	42	23	8	0.970	95.2	49.8	64.0	74.7	96.4	88.4
-4	no	У	44	30	5	0.976	95.6	48.5	68.7	73.9	96.2	89.3
-4	yes	У	43	30	5	0.975	95.8	49.6	68.6	76.1	96.0	89.6
-4	no	n	42	29	6	0.974	96.3	44.3	68.4	73.5	96.3	88.2
-4	yes	n	41	28	6	0.973	96.0	45.4	69.3	74.2	96.5	88.5

Preliminary conclusions

- The Regression Tree (RT) methodology, which is strictly variance-based, was not able to predict leaching concentrations well for the middle concentration range $(0.001 - 0.1 \mu g/L)$.
- This is most probably due to the distribution of the target variable in the MACRO dataset, with predominantly very high or very low values.
- Possibly RT is not the most suitable approach either for the regular grid of substance properties we used \rightarrow to be tested.

- Run CART on whole calibration data set (18720) runs) and apply predictively to new test dataset
- Prepare lookup table from the 18720 runs and try different interpolation approaches (linear, loglinear, other) in a 3-dimensional space (Koc, DT50, nf). Apply best interpolation approach predictively to new simulations.
- Compare the predictive performances of CART and the interpolation approach.
- Potentially create new calibration dataset with different distributions of target variable and substance parameters.

Outlook

- Once a working meta-model has been established for the test region of SW Skåne, the analysis will be extended to other climatic regions in Sweden.
- The meta-model will be integrated in a web-based tool for GW risk assessment in water abstraction zones.

Acknowledgements

Financial support from the Swedish Agency for Marine and Water Management is gratefully acknowledged (Contract 1022-18).