NJF seminar 443 Utilisation of manure and other residues as fertilizers 29-30 November 2011 Sweden

INFLUENCE OF PRECEDING CROP, SITE AND NITROGEN MANAGEMENT ON YIELD OF ORGANIC OIL SEED RAPE (*Brassica napus* L.)

Maria Stenberg, Lena Engström, Ann-Charlotte Wallenhammar and Per Stähl

Swedish University of Agricultural Sciences Department of Soil & Environment Precision farming & pedometrics http://www.slu.se/mark

J. SLU

Financed by SLU EkoFors

Background

- Increasing demand of organic oil seed products, € 0,65 per kg seeds.
- Low yields in organic winter oilseed rape (WOR) cropping often explained by low nitrogen (N) availability.
- High WOR N demand when the growth starts early in spring.
- Usually low soil net N mineralisation early in spring.
- Risk for slow N release from organic fertilisers and consequently low N effect at spring application in winter crops. Dry spring in many areas.

Objectives was to study.....

- The importance of autumn application of organic nitrogen fertilisers for the yield level of organic WOR.
- The importance of spring application of organic nitrogen fertilisers for the yield level of organic WOR
- How optimum N rate in spring was affected by N availability in soil and yield level

Materials & methods

Two factors Ten treatments Four replicates 12 experiments

Application in autumn: 0 or 50 kg N/ha (Biofer 10-3-1)

Application in early spring: 0, 50, 100, 150 or 200 kg N/ha (based on total N) as Vinasse (4 % N).

Sampling and analyses

* Yields and analyses of seed quality.

- * N uptake in late autumn, early spring and at flowering determined by crop sampling and analyses.
- Soil mineral N in 0-90 cm at establishment, late autumn, early spring, and at harvest

Site information									
Year	2008/2009				2009/2010				
Experimental site	1 Hemse	2 Trelleborg	3 Borrby	4 Dingle	5 Kristian- stad	6 Borrby	7 Logård- en	8 Halland	
Preceding crop	Pasture	White clover	White clover	Grass- clover ley	Grass (14 year set aside)	White clover	Green manure (red clover)	Grass- clover ley (2 years)	
Soil	Silt	Silt	Sand	Silt	Sand	Sand	Silty clay	Sand	
Sowing	15 Aug.	1 Sep.	1 Sep.	25 Aug.	20 Aug.	27 Aug.	20 Aug.	19 Aug.	
Fertilisation autumn	4 Sep.	17 Sep.	11 Sep.	-	3 Sep.	16 Sep.	8 Sep.	18 Sep.	
Fertilisation spring	8 Apr.	8 Apr.	8 Apr.	-	31 Mar.	8 Apr.	15 Apr.	28 Apr.	
Variety	Cadillac	Carousel	Calypso	Calypso	Calypso	Hornet	Calypso	Hornet	

Soil mineral N at sowing, late autumn and early spring were high!

N applied in spring increased yield 700 kg ha⁻¹ on average for 5 sites (p< 0,01)!

Net income (seed price 6 SEK/kg, Vinasse 22 SEK/kg N, drying and transport costs 0,2 SEK/ha)

Seed yield of unfertilised crop was well correlated (p< 0.05) to

.....soil mineral N + N-uptake in late autumn

The variation in optimum N-rate in spring could be explained by N-uptake in autumn, soil mineral N in autumn and yield!

Equation Y = optimum N	R² (adj)
$V = 40, 4.8y, 4.0y \pm 0.07y$	0.93**
$1 = 43 - 1.0x_1 - 1.3x_2 + 0.07x_3$	0.95

Conclusions

- Autumn N fertilisation (in Sep) can not be recommended to organic WOR with good preceding crops (white clover, pasture and red clover) and late sowing date.
- Spring N fertilisation with Vinasse can be recommended since yield increased on average 700 kg at five sites.
- Optimum N –rate in spring varied greatly and should be estimated site specifically.
- To calculate optimum N-rate in spring N uptake and soil mineral N in autumn and yield level should be considered.

