Technological breakthroughs in weed management

Christian Andreasen

Department of Plant and Environmental Science

Crop protection futures in agriculture 24th May 2023

UNIVERSITY OF COPENHAGEN

Integrated weed management

- Avoid weed infestation and weed seeds in the soil
- Establish competitive crops/crop rotation
- Site-specific weed management
- Mechanical weeding
- Electric weeding
- Laser weeding

Harvest Weed Seed Control

- At crop harvest a combine harvester harvest crop and weed seeds
- The weed seeds are often returned to the field
- Collecting, destroying or moving the seeds out of the field can reduce weed infestation in the following season.

Seeds retained on the plants at wheat harvest

85%

100%

Cleavers (Galium aparine)

57%

Windgrass (*Apera spica-venti*)

Annual ryegrass (Lolium rigidum)

Harvest weed seed control

- Seed destructors
- Baling directly
- Collect chaff

Chaff carts

Seed Destructor

Bale direct

Site-specific weed management Mapping weeds and only control where it is necessary

"Thistle tool" develop by J. Rasmussen, Uni. Copenhagen

Capacity: 35 ha takes about 25 minutes

•

Mechanical weed control

The world's first seeding and weeding robot Several robots are now on the marketplace

ROBOTTI 150D from Agrointelli

FarmDroid FD20 is a solar powered field robot. completely CO₂-neutral

Farmdroid

Slow farming

GPS precision: 2.5 cm Capacity: 20 ha sugar beet Certified to drive day and night without surveillence

Electric weeding

Electricity used to boil weeds from the root upwards Kill weeds at frequencies of 18kHz and above..

Electrical

Control of unwanted plants through electricity for sustainable destruction.

 Systemics mode of action
Irreversible destruction of cell compartmentation

 Immediate plant death

No environmental or social cost

RootWave https://www.youtube.com/watch?v=qBOQlvLJyPc

https://zasso.com/technology/

Laser Weeding

- Laser beams can be focused to extremely small spots, achieving a very high irradiance
- (Beam diameter: 2 mm, wavelength 2 μm)
- The energy consumption is rather high
- Artificial intelligence and deep learning techniques make it possible to locate and identify weeds and crops
- The laser beam hits the meristem of the weed and damage or kill it.

Killing the shoot (Apical meristem)

<text>

https://carbonrobotics.com/laserweeder

https://welaser-project.eu/

Laser Weeding Advantages

- A laser beam can kill weed plants very close to the crop plant without harming the crop
- The exposed area is less than 1% even at high weed densities (250 weeds/m²)
- The risk of harming beneficial organisms are small
- The vehicle does not move the soil like mechanical weeding stimulating new cohorts of weeds to germinate
- Soil compaction can be avoided using small vehicles

Killing the shoot (Apical meristem)

https://welaser-project.eu/

Conclusions

- New and well-know technologies can reduce weed infestation
- New technologies can replace or complement herbicides
- Small weeding robots have some advantage but may also a capacity problem
- Combining methods may reduce capacity problems
- Most autonomous vehicles still require surveillance!

https://www.naio-technologies.com/en/dino/

Sustainable Weed Management in Agriculture with Laser-Based Autonomous Tools

Thank you for your attention!

https://welaser-project.eu/

This presentation is funded by the EU–project *WeLASER* "Sustainable Weed Management in Agriculture with Laser-Based Autonomous Tools," Grant agreement ID: 101000256, funded under H2020-EU.3.2.1.1.

Co-funded by the Horizon 2020 programme of the European Union

