#### **Ministry of Environment, RA** Hydrometeorology and **Monitoring Center** (HMC)







6th joint, 31st ICP IM and 39th ICP Waters Task Force Meeting Lunz, Austria, 9-11 May 2023

## Nitrogen and Heavy **Metals in the Arpa River Basin**

Alina Zurnachyan, Armenia

## Content

#### **Departments of HMC**

Observation Networks in Armenia

□ Meteorology and Climate

□ Air Qualit

**Water Quality Monitoring** 

□ Information analytical Service

**G** Future

## **Departments of HMC**

- Air quality monitoring Nox, SOx, CO, ground-level ozone (O<sub>3</sub>), dust
- Surface water quality monitoring oxygen conditions, mineralization conditions, pH, Nutrients, Major Ions, heavy metals, primary organic pollutants
- Groundwater quality monitoring oxygen conditions, mineralization conditions, pH, Nutrients, main anions and cations, heavy metals
- Soil monitoring mineralization conditions, pH, humidity, Nutrients, main anions and cations, heavy metals
- Forest monitoring
- Waste monitoring
- Landfills monitoring
- Climate Climate change, Temperature, atmospheric pressure, wind direction and speed, air humidity, amount of precipitation, form and amount of cloud cover, horizontal visibility and atmospheric others phenomena
- About Agrometeorology Agriculture, Agro-climatic information, etc.
- Information analytical service

## Surface and groundwater quality and quantity, atmospheric air quality, hydrometeorological monitoring network



#### Surface water quality observation network

The monitoring observation network of the surface water includes 155 observation points of water objects (rivers, reservoirs, Arpa-Sevan water pipeline and Lake Sevan) of 6 water basin management areas of the Republic (Northern, Akhuryan, Hrazdan, Sevan, Araratyan, Southern). Water quality is characterized by up to 65 physicochemical indicators (basic anions and cations, nutrients, heavy metals, primary organic pollutants), with a frequency of 5-12 times a year. The water quality assessment is supervised in accordance with the N75-N decree (January 27, 2011) of the RA Government.

#### Underground freshwater observation network

Underground freshwater monitoring survey network consists of 100 groundwater springs of republic's 6 water basin management areas (Northern, Akhuryan, Hrazdan, Sevan, Araratyan, Southern), which include 25 self-flowing wells, 32 borehole wells and 43 natural springs. The monitoring of water volume, level (pressure) and temperature is done 6 times per month. Also, groundwater quality monitoring is accomplished in 40 springs twice a year, in each of which around 40 indicators are determined (major anions and cations, metals and salt regime elements).

#### Atmospheric air quality observation network

Atmospheric air quality monitoring is carried out in Yerevan, Gyumri, Vanadzor, Alaverdi, Hrazdan, Ararat, Tsaghkadzor, Charentsavan, Kapan and Kajaran cities. There are 15 stationary active sampling observation stations and 214 mobile passive sampling observation stations in the above settlements. The assessment of atmospheric air quality is performed by comparison with the limit permissible concentrations of pollutants (Ls) approved by the RA Government's decision N 160-H of February 2, 2006.

#### Meteorological observation network

Meteorological observations are made at 46 (including 6 hard-to-reach and 3 specialized) meteorological stations of the republic. Observations are carried out in accordance with the procedure established by the World Meteorological Organization and in accordance with international standards: once every 3 hours starting at 00:00 (GMT), atmospheric phenomena and weather conditions are observed every day.

1935-2022 in the territory of Armenia seasonal and annual variation of average temperature and precipitation from normal



## **Air Quality Monitoring**

#### Atmospheric air pollution can be natural or anthropogenic. The main causes of pollution can be:

- fuel burning (electricity production, transport, industry and households);
- industrial emissions, for example from the chemical and mining industries,
- ➤ agriculture,
- open burning of waste,
- natural sources, including volcanic eruptions, the spread of mountain dust, emissions of volatile organic compounds from plants, etc.

#### The main pollutants

**Sulfur dioxide** - It appears in the atmosphere during the burning of sulfurcontaining fuels, the extraction of metals from ores and other industrial processes. Long-term exposure to sulfur dioxide causes respiratory diseases, changes in lung defense mechanisms. Its high content in the atmospheric air especially affects children and people suffering from asthma, affects the narrowing of the airways, making breathing worse.

**Nitrogen dioxide** – The main source of atmospheric emissions is motor vehicles. The high content of nitrogen dioxide in the atmospheric air can seriously damage the lungs, cause respiratory diseases, and changes in the protective mechanisms of the lungs. Its high content can affect people suffering from asthma.

**Carbon monoxide** - The main source of production is motor vehicles, but can also be caused by boiler exhaust emissions. Its content is high in large cities, especially near intersections and bus stops. High levels of carbon monoxide in atmospheric air can affect the brain, cardiovascular system, skeletal muscles, and fetal development.

**Dust** - a set of hard, small particles of organic or mineral origin. Dust pollution comes from various sources: industrial processes, vehicles, road dust, construction, some agricultural activities, lack of green spaces. The impact of dust in ambient air on human health depends on the size and composition of dust particles, as well as the duration of exposure. Dust can contribute to a number of health problems, many diseases, including coughs, itchy skin, lung diseases, asthma and heart attacks.

The content of heavy metals in dust - Pb, Cu, Mo, Fe, Co, Zn, Ni, Cd, etc.

The amount of emissions from stationary sources

by activity sector (t), 2021



# Fuel and emissions quantity from mobile sources by type of fuel, 2021, thousand tons • Amount of fuel • Emissions quantity 226.4 363.8

400

350

300

250

200

150 100

> 50 0



## **Air Quality Monitoring**

Atmospheric emissions in 2021 amounted to 308,900 tons, 69.6% () of which fell to mobile emission sources, 30.4% to stationary sources.

The amount of harmful substances released into the atmosphere from mobile sources in 2021 was 215 thousand tons. About 72.5% of the total amount of harmful substances emitted is carbon monoxide, 17.2% - volatile organic compounds, 9.9% - nitrogen oxides, 0.4% - other substances.

## Pollutants emitted into the atmosphere from stationary emission sources, 2021



## Pollutant emissions quantity from mobile sources, 2021



## **Water Quality Monitoring**

#### Main impacts on water bodies



#### The types of monitoring required

- Meteorological monitoring
- Field physico-chemical measurment
- Chemical monitoring
- Biological monitoring

## Field multiparameter devices



**YSI ProDSS** 







Secchi disk



**Batometer** 



### Sampling procedure



## **Chemical analysis**



ICP-MS, ELAN 9000, Perkin Elmer



IC, Metrohm



GC-MS 7890A/5975C Agilentr



Spectrophotometry, Specord 210 Plus



Vario TOC Cube, Elementary





Microscope, SZM-2

XRF analyser, OLYMPUS, VANTA





- Vayots Dzor Region is located in the south-east of Armenia, in the basin of the Arpa River.
- The altitude here varies from 850 meters (Areni) to 3522 meters above sea level.
- Large reserves of copper, tuff, marble, limestone, clay, basalt, granite, felsite (Martiros felsite) and mineral water have been found in the area.

## Characterization of sampling sites and monitoring types in the Arpa river basin

| River               | Sampling<br>points | Latitude | Longitude | Location                                             | Type of<br>sampling<br>site | Type of monitoring                                                    |  |
|---------------------|--------------------|----------|-----------|------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------|--|
| Arpa                | 83                 | 39,83758 | 45,67689  | 0.5km above Jermuk town                              | R                           | Biological, Physical-chemical<br>Hydrological and hydro-morphological |  |
| Kechut<br>reservoir | 114                | 39,78933 | 45,64754  | At Kechut reservoir                                  | С                           | Physical-chemical                                                     |  |
| Darb                | 348                | 39.68578 | 45.68348  | On Darb tributary, above Ughedzor settlements        | R                           | Biological, Physical-chemical<br>Hydrological and hydro-morphological |  |
| Darb                | 349                | 39.69362 | 45.56768  | On Darb tributary, 0.5 km above river mouth          | С                           | Biological, Physical-chemical<br>Hydrological and hydro-morphological |  |
| Herher              | 350                | 39.82404 | 45.54257  | On Herher tributary, 1km above Village<br>Karmrashen | R                           | Biological, Physical-chemical<br>Hydrological and hydro-morphological |  |
| Herher              | 351                | 39.69232 | 45.52348  | On Herher tributary, 0.5 km above river mouth        | Ι                           | Biological, Physical-chemical<br>Hydrological and hydro-morphological |  |
| Yeghegis            | 352                | 39.92165 | 45.50629  | On Yeghegis river, 5 km above Village Getikvank      | R                           | Biological, Physical-chemical<br>Hydrological and hydro-morphological |  |
| Yeghegis            | 88                 | 39,74828 | 45,31125  | On Yeghegis river, 1 km above river mouth            | С                           | Biological, Physical-chemical<br>Hydrological and hydro-morphological |  |
| Arpa                | 84                 | 39,68389 | 45,49789  | On Arpa river, 0.5km above Vayk town                 | Ι                           | Physical-chemical                                                     |  |
| Arpa                | 85                 | 39,70756 | 45,42639  | On Arpa river, 0.5km below Vayk town                 | Ι                           | Biological, Physical-chemical<br>Hydrological and hydro-morphological |  |
| Arpa                | 86                 | 39,74028 | 45,34383  | On Arpa river, 0.5km above Yeghegnadzor town         | Ι                           | Biological, Physical-chemical<br>Hydrological and hydro-morphological |  |
| Arpa                | 87                 | 39,72078 | 45,15533  | On Yeghegis river, 1 km above river mouth            | Ι                           | Biological, Physical-chemical<br>Hydrological and hydro-morphological |  |

(R=reference, I=influenced, C=comperative)

## Assessed water quality at the sampling sites of the Arpa River Basins based on the national water quality norms

| 2020        |                   |                                   |             |                            |                        |                                      |  |  |
|-------------|-------------------|-----------------------------------|-------------|----------------------------|------------------------|--------------------------------------|--|--|
| River basin | River             | Sampling Site                     | Site number | Water quality<br>parameter | Water quality<br>class | Integrated class of<br>water quality |  |  |
|             | Arpa              | 0.5 km above<br>Jermuk city       | N83         | Phosphate ion, Fe          | Moderate               | Moderate                             |  |  |
|             |                   | 0.5 km above Vayq<br>city         | N84         | Мо                         | Moderate               | Moderate                             |  |  |
|             |                   | 0.5 km below Vayq<br>city         | N85         | Mo, Ba, Sb                 | Moderate               | Moderate                             |  |  |
|             |                   | 0.5 km above<br>Yeghegnadzor city | N86         | Mo, Mn, Ba                 | Moderate               | Moderate                             |  |  |
|             |                   | 0.5 km below Areni                | N107        | Mn, Fe, Ba, K, Al          | Moderate               | Door                                 |  |  |
| Ararat      |                   | city                              | 1107        | Мо                         | Poor                   | POOL                                 |  |  |
|             | Darb              | Source of the river               | N348        | Fe, B, Al                  | Moderate               | Moderate                             |  |  |
|             |                   | Delta of the river                | N349        | Mo, Mn, Fe, Ba, K          | Moderate               | Moderate                             |  |  |
|             |                   | Source of the river               | N350        | -                          | Good                   | Good                                 |  |  |
|             | Herher            | Delta of the river                | N351        | Мо                         | Moderate               | Moderate                             |  |  |
|             | Yeghegis          | Above Getikvanq<br>village        | N352        | Fe                         | Moderate               | Moderate                             |  |  |
|             |                   | 0.5 km below                      | N/00        | Ва                         | Moderate               | 0                                    |  |  |
|             |                   | Shatin village                    | IN&&        | Мо                         | Poor                   | POOT                                 |  |  |
| Southern    | Ketchut reservoir | near a dam                        | N114        | -                          | Good                   | Good                                 |  |  |

| 2021        |                   |                                      |             |                         |                     |                                      |  |  |
|-------------|-------------------|--------------------------------------|-------------|-------------------------|---------------------|--------------------------------------|--|--|
| River basin | River             | Sampling Site                        | Site number | Water quality parameter | Water quality class | Integrated class of<br>water quality |  |  |
|             | Arpa              | 0.5 km above<br>Jermuk city          | N83         | -                       | Good                | Good                                 |  |  |
|             |                   | 0.5 km above Vayq<br>city N84 Mo, Fe |             | Mo, Fe                  | Moderate            | Moderate                             |  |  |
|             |                   | 0.5 km below Vayq<br>city            | N85         | Fe, Ba, Sb              | Moderate            | Poor                                 |  |  |
|             |                   | city                                 |             | Мо                      | Poor                |                                      |  |  |
|             |                   | 0.5 km above<br>Veghegnadzor city    | N86         | Fe, Ba, Sb              | Moderate            | Bad                                  |  |  |
| <b>.</b> .  |                   | regnegnuuzor city                    |             | Мо                      | Bad                 |                                      |  |  |
| Ararat      |                   | 0.5 km below Areni                   | N87         | Fe, Ca, sulphate<br>ion | Moderate            | Poor                                 |  |  |
|             |                   | City                                 |             | Мо, Ва                  | Poor                |                                      |  |  |
|             | Darb              | Source of the river                  | N348        | Mo, Fe                  | Moderate            | Moderate                             |  |  |
|             |                   | Delta of the river N349              |             | Mo, Fe, Ba, Sb          | Moderate            | Moderate                             |  |  |
|             | Herher            | Delta of the river                   | N351        | Mo, Fe                  | Moderate            | Moderate                             |  |  |
|             | Versherie         | Above Getikvanq<br>village           | N352        | Fe                      | Moderate            | Moderate                             |  |  |
|             | regnegis          | 0.5 km below Shatin<br>village       | N88         | Fe                      | Moderate            | Moderate                             |  |  |
| Southern    | Ketchut reservoir | near a dam                           | N114        | -                       | Good                | Good                                 |  |  |

| 2022        |                   |                                       |                        |                            |                        |                                      |  |  |
|-------------|-------------------|---------------------------------------|------------------------|----------------------------|------------------------|--------------------------------------|--|--|
| River basin | River             | Sampling Site Site number             |                        | Water quality<br>parameter | Water quality<br>class | Integrated class of<br>water quality |  |  |
|             | Arpa              | 0.5 km above Jermuk                   | N83                    | Mn, Fe                     | Moderate               | Poor                                 |  |  |
|             |                   | city                                  |                        | Al                         | Poor                   | Poor                                 |  |  |
| Ararat      |                   | 0.5 km above Vayq<br>city             | N84                    | Мо                         | Moderate               | Moderate                             |  |  |
|             |                   | 0.5 km below Vayq                     | N195                   | Sb                         | Moderate               | Poor                                 |  |  |
|             |                   | city                                  | 2011                   | Мо                         | Poor                   | Poor                                 |  |  |
|             |                   | 0.5 km above<br>Yeghegnadzor city N86 |                        | Мо, Ва                     | Moderate               | Moderate                             |  |  |
|             |                   | 0.5 km below Areni                    | N87                    | Ва                         | Moderate               | Poor                                 |  |  |
|             |                   | city                                  |                        | Мо                         | Poor                   | Poor                                 |  |  |
|             | Darb              | Source of the river                   | N348                   | Fe, Ba                     | Moderate               | Bad                                  |  |  |
|             |                   | Source of the river                   |                        | Mn                         | Bad                    | Duu                                  |  |  |
|             |                   | Delta of the river                    | elta of the river N349 |                            | Moderate               | Moderate                             |  |  |
|             | Herher            | Delta of the river                    | N350                   | Мо                         | Moderate               | Moderate                             |  |  |
|             | Vashasia          | Above Getikvanq<br>village N352       |                        | Fe                         | Moderate               | Moderate                             |  |  |
|             | regnegis          | 0.5 km below Shatin<br>village        | N88                    | Ammonia ion,<br>Mo, Ba     | Moderate               | Moderate                             |  |  |
| Southern    | Ketchut reservoir | near a dam                            | N114                   | _                          | Good                   | Good                                 |  |  |



## **Pictures of Arpa River Basin**



Jermuk waterfall

Kechut reservoir (114)







Middle reaches of the Arpa River (86)



Upper reaches of the Arpa River (83)

Lower reaches of the Arpa River (87)

## Changes of pH in 2020, 2021, 2022 in the same stations



## Changes of Total Inorganic Nitrogen in 2020, 2021, 2022 in the same stations







## Changes of Molybden in 2020, 2021, 2022 in the same stations



## **Ecological Status at the sampling sites**

| River               | Site<br>No. | Type of<br>sampling<br>site | nEQR | Ecological<br>status | nEQR    | Ecological<br>status | nEQR    | Ecological<br>status |
|---------------------|-------------|-----------------------------|------|----------------------|---------|----------------------|---------|----------------------|
|                     |             |                             | 2020 |                      | 2021    |                      | 2022    |                      |
| Arpa                | 83          | R                           | 1.00 | High                 | 1.00    | High                 | 1.00    | High                 |
| Kechut<br>reservoir | 114         | С                           | -    | -                    | -       | -                    | -       | -                    |
| Darb                | 348         | R                           | 1.00 | High                 | 1.00    | HIGH                 | 1.00    | HIGH                 |
| Darb                | 349         | С                           | 0.66 | GOOD                 | 0.80    | HIGH                 | 0.76    | GOOD                 |
| Herher              | 350         | R                           | 0.69 | GOOD                 | Parched |                      | Parched |                      |
| Herher              | 351         | Ι                           | 1.00 | HIGH                 | 1.00    | HIGH                 | 1.00    | HIGH                 |
| Yeghegis            | 352         | R                           | 1.00 | HIGH                 | 1.00    | HIGH                 | 1.00    | HIGH                 |
| Yeghegis            | 88          | С                           | 0.64 | GOOD                 | 0.61    | GOOD                 | 0.43    | MODERATE             |
| Arpa                | 84          | Ι                           | -    | -                    | -       | -                    | -       | -                    |
| Arpa                | 85          | Ι                           | 0.61 | GOOD                 | 0.45    | MODERATE             | 0.83    | HIGH                 |
| Arpa                | 86          | Ι                           | 0.73 | GOOD                 | 0.36    | POOR                 | 1.00    | HIGH                 |
| Arpa                | 87          | Ι                           | 0.60 | MODERATE             | 0.38    | POOR                 | 0.64    | GOOD                 |

(R=reference, I=influenced, C=comperative)

## **Pollution source risk**

#### Amulsar gold mine



According to the information distributed by Lydian Armenia company, the confirmed total reserves of Amulsar mine are 89376.3 thousand tons of ore, 73733 kg of gold, 294.367 tons of silver. The extraction of metals from ore is planned to be carried out by heap leaching, during which on the ore heap a dilute solution of cyanide to be added dropwise.



### Future

- ✓ We will continue carried out the monitoring of each components (water, air, soil and forest) to control any changes.
- ✓ We will add air quality monitoring stations to control dust and cyanide concentrations in ambient air.

## Information analytical service

All this data from various departments is collected and analyzed by the Information Analytical Service and published on the official website of our organization (<u>http://meteomonitoring.am</u>), in newsletters and on social platforms: <u>https://www.facebook.com/HydrometeorologyandMonitoringCenter</u> <u>https://www.instagram.com/hydrometeorologymonitoring\_hmc/</u> Water being the source of life, without which humanity is doomed to destruction, therefore, good water quality is the key to a good life.

