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The development of a co-ordinated system for monitoring European biodiversity
that can provide policy makers with information to underpin the management of
ecological resources requires an appropriate environmental stratification to
facilitate sampling and data analysis. This paper quantifies the similarities
between the European Environmental Stratification (EnS) and four regional
stratifications to test whether the EnS is able to distinguish locally important
environmental gradients. The results show that in general the EnS is comparable
with regional stratifications, and resolves border effects where divergent
environmental conditions are combined into dominant strata. However, some
regional gradients are not discerned, illustrating the value of national stratifica-
tions to provide local detail within continental monitoring strata.

Keywords: environmental stratification; map comparison; Kappa statistic;
monitoring; biodiversity observation network

1. Introduction

Policy commitments to maintain biodiversity and mitigate environmental change,
both within the European Union (EU) and internationally, require pan-European
strategies and supporting research for managing natural resources (Metzger et al.
2010). Reliable monitoring data are also required from large areas in order to make
informed decisions on ecosystem management (Parr et al. 2002, 2003, Pereira and
Cooper 2006). However, despite the existence of several regional habitat monitoring
programmes across Europe, the collection of ecological data is only co-ordinated at
the national level, following country or regional specific methods, classifications and
priorities, without EU or international co-ordination (Bunce et al. 2008, Lengyel
et al. 2008, Schmeller 2008, Metzger et al. 2010). It is therefore increasingly evident
that standardised frameworks and methods at continental and global scales are
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required in order to enable countries to integrate data for ecological monitoring and
assessment (GEOSS 2005, Evans 2006, Bunce et al. 2008).

Consistent classifications or stratifications1 of land into relatively homogeneous
environmental strata provide a robust framework for comparison and analysis of
environmental data and sampling ecological resources over large geographic regions
(Bunce et al. 1996a, 1996b, 1996c, Metzger et al. 2005, Jongman et al. 2006).
Furthermore, statistical inference requires sample data to be representative of defined
population (Cochran 1977). Within a stratum, or subpopulation, changes or effects
can, as far as possible, be analysed separately from environmental heterogeneity by
using standard statistical procedures (Bunce et al. 1996a, Cochran 1977). It is essential,
however, that any environmental stratification has a sufficiently fine spatial resolution
and is derived statistically in order that the strata are determined unambiguously. The
stratification is then reproducible and, as far as possible, independent of personal bias.
This is of particular importance where large-scale continuous gradients are involved
over hundreds of kilometres, and clear boundaries between zones are often not present.
Statistical analysis provides robust divisions based on the balance between the
environmental variables underpinning the stratification (Metzger et al. 2005).

Many countries have adapted quantitative environmental stratifications to
support environmental management and planning, e.g. Australia (Mackey et al.
1988), Spain (Elena-Rosselló et al. 1997), Austria (Wrbka et al. 1999), New Zealand
(Leathwick et al. 2003), Senegal (Tappan et al. 2004), Sweden (Esseen et al. 2006),
and Norway (Bakkestuen et al. 2008). The Great Britain Countryside Survey2

provides one of the best documented examples of a national monitoring scheme
designed to assess stock and habitats and vegetation, providing decadal surveys since
the 1970s (Firbank et al. 2003, Sheail and Bunce 2003). Other countries with similar
monitoring schemes include Spain (Elena-Rosselló et al. 2005), Austria (Peterseil
et al. 2004), and Sweden (Ståhl et al. 2011).

Recently, the EU has initiated the EBONE3 project (European Biodiversity
Observation Network), which aims to provide a method to produce sound scientific
estimates of stock and change in European biodiversity at species and ecosystems
levels. Coherent data collection, data harmonisation and integration between field
and earth observations are important elements in the project, which is designed to
provide policy makers with basic information to underpin their planning and
management activities. EBONE has formal links to the Group on Earth
Observations Biodiversity Observation Network (GEO BON), the biodiversity
arm of the Global Earth Observation System of Systems (GEOSS), which is
recognised by the Parties to the Convention on Biological Diversity (CBD 2010).

Within EBONE, the recently developed Environmental Stratification of Europe
(EnS, Metzger et al. 2005) is used to provide the sampling framework. Although the
EnS is the most relevant available dataset and has been used in numerous studies
(Hazeu et al. 2011), there is still a degree of environmental heterogeneity within
strata, especially in regions with complex regional gradients, e.g. the stratum ALS1
(Alpine South one) covers a range of altitudes from mountain valleys at 630 m to
summits at 4453 m. It is therefore important to assess how accurately the EnS
represents recognised regional environmental divisions (Bunce et al. 2002).

This paper presents a statistical comparison of similarities of mapped environ-
mental features among maps of differing scales, themes and purposes. Four national
environmental stratifications from different geographic regions in Europe (i.e. Great
Britain, Sweden, Austria and Spain) are compared with the EnS, using three statistical

2 M. Ortega et al.
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measures: Kappa (Monserud and Leemans 1992), Delta (Martin and Femia 2004) and
a consistency index S. The analyses were designed to demonstrate whether a
continental stratification such as the EnS provides sufficient detail for the integration
of environmental data at a European level from regional studies.

This paper does not include accuracy assessments of the classifications. However,
these have been carried out previously by Bunce et al. (1996a) and Metzger et al.
(2005), confirming the validity of the stratification using independent data.

2. Environmental stratifications

2.1. The Environmental Stratification of Europe (EnS)

The EnS identifies relatively homogeneous regions suitable for strategic random
sampling of ecological resources through the selection of sites for representative
studies across the continent (Metzger et al. 2010), and the provision of strata for
modelling exercises (Verboom et al. 2007, Metzger et al. 2008). The EnS provides a
generic classification that can be adapted for a specific objective, as well as providing
suitable zoning for environmental reporting (Hazeu et al. 2011).

The EnS was created using tried-and-tested statistical clustering procedures on primary
physical environment variables, and covers a ‘Greater European window’ (118W–328E,
348N–728N), extending into northern Africa. This wider extent was needed to permit
statistical clustering that could distinguish environments whose main distribution is
outside the European continent. Data were analysed at 1 km2 resolution. Twenty of the
most relevant available environmental variables were selected, based on those identified by
statistical screening (Bunce et al. 1996d). These were (1) climate variables from the
Climatic Research Unit (CRU) TS1.2 dataset (Mitchell et al. 2004); (2) elevation data
from the United States Geological Survey HYDRO1k digital terrain model; and (3)
indicators for oceanicity and northing. Principal Components Analysis (PCA) was used to
compress 88% of the variation of these 20 environmental characteristics into three
dimensions, which were subsequently clustered using an ISODATA clustering routine.
The classification procedure is described in detail by Metzger et al. (2005).

The EnS comprises 84 strata, aggregated into 13 Environmental Zones (EnZ).
These were constructed using arbitrary divisions of themean first principal component
score of the strata, with the exception of Mediterranean mountains, which were
separated on altitude. Within each EnZ, the EnS strata have been given systematic
names based on a three-letter abbreviation of the EnZ to which the stratum belongs
and an ordered number based on themean first principal component score of the PCA.
For example, the EnS stratumwith the highest mean principal component score within
the Mediterranean South EnZ is named MDS1 (Mediterranean South one).

2.2. The Countryside Survey (CS) Land Classification of Great Britain

The Countryside Survey (CS) is a monitoring project that has recorded stock and
change of features, such as land cover, habitats and vegetation by means of a
stratified random series of 161 km squares in 1978, 1984, 1990, 2000 and 2007.

The land classification (Bunce et al. 1996a, 1996b, 1996c) was initially developed
using multivariate TWINSPAN analysis (Hill 1979) of environmental variables.
Climatic, topographic, geological and anthropogenic data were recorded from 1200
out of the 240,000 161 km squares of the National Grid of Great Britain (GB) laid
out at the intersections of a 15 km square grid. Logistic regression and discriminant

Journal of Environmental Planning and Management 3
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functions were subsequently used to assign all the remaining squares to the original
classes but also to reassign the squares from the initial grid sample. Field surveys of
ecological parameters have been used to provide independent data for testing the
classification, to characterise the classes and to provide national estimates of habitats
and vegetation (Barr et al. 1993). Since CS2000 (Haines-Young et al. 2000, Firbank
et al. 2003), the policy requirement was for Scotland to be kept separate from the rest
of the UK led to 40 classes (Figure 1(a)) being derived from the initial 32 classes
according to their presence in the two regions.

2.3. The National Inventory of Landscapes in Sweden (NILS) stratification

The main objective of the NILS programme is to provide and perform data analyses
of environmental conditions and ecological processes at the landscape scale (Allard

Figure 1. Comparison of the environmental stratification of Great Britain with the
Environmental Stratification of Europe (EnS): (a) Countryside Survey (CS) Land
Classification (Bunce et al. 1996a, 1996b; Barr et al. 1993). The 40 land classes were
reduced to nine classes in order to show the main distribution patterns. (b) The seven strata of
the EnS (Metzger et al. 2005) and (c) Map of consistency between (a) and (b).
Note: Please see online colour version for full interpretation.

4 M. Ortega et al.
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et al. 2003, Esseen et al. 2006, Ståhl et al. 2011). NILS provides national statistics on
land cover, land use and landscape structure for all terrestrial biotopes in Sweden, as
well as providing an infrastructure for other monitoring and/or research exercises.
NILS was launched in the summer of 2003, and by the end of the 2007 season all
plots in the five-year sample had been inventoried.

The environmental stratification was based on a 5 km grid that was divided
into 10 strata based on natural as well as sociological/cultural factors. In
southern and middle Sweden the distribution is based on agricultural yield areas,
defined by the Swedish Board of Agriculture. This means that the yield areas 1–6
form the strata 1–6 in NILS. In northern Sweden, the alpine areas and the alpine
forests are assigned to a special stratum according to a nature conservation
boundary defined by the Swedish Society for Nature Conservation (SYNC). In
northern Sweden agricultural land mostly occurs below the Highest Coast Line
(HCL) along the east coast. To be able to capture this agricultural land, the
coastal area is assigned to a specific stratum based on the HCL. In most of the
cases, the HCL and the border of the agricultural land coincide. However,
sometimes the HCL is located far inland in forested areas. Therefore, the border
of this stratum has been modified slightly compared to the HCL. The inland of
Norrland is divided into two strata; the border goes between the provinces of
Jämtland/Ångermanland and the county of Västerbotten (Figure 2(a)).

2.4. The Spatial Indices for Land Use Sustainability (SINUS) stratification

SINUS is a project designed to develop reliable, operational and spatially explicit
indicators of practical use in long-term monitoring and assessment of ecological
sustainability of Austrian cultural landscapes (Peterseil et al. 2004). In 1997, land use
data and hemerobiotic character were recorded in 182 161 km squares with a
stratified sampling using a design based on Austrian Landscape Classification
(Wrbka et al. 1999).

The SINUS classification provides a framework for the description of the natural
preconditions of agricultural land use in Austria. The classification was based on
geo-morphological features, historical land-use patterns and preliminary coarse
landscape types. The methodology used was the intersection of three thematic maps
(altitudinal zones, geological land units and land use type) and classification with an
isoclustering algorithm. Approximately 16,000 individual landscapes were delineated
for the whole Austrian territory and then classified into 12 first-order landscape-type
series and 42 second-order landscape-type groups. This final segregation has been
used to compare with EnS in this paper (Figure 3(a)).

2.5. The Spanish Rural Landscape Monitoring System (SISPARES) Biogeoclimatic
Land Classification

SISPARES is an ongoing project designed to study the ecological value and
dynamics of rural landscapes in Spain, including their characterisation and
classification (Elena-Rosselló et al. 2005). The initial stage was the establishment
of a representative Spanish Rural Landscape Network (REDPARES) that has 206
464 km squares derived from a stratified simple random sampling. All the squares
were surveyed using aerial photographs at four dates (1956, 1984, 1998 and 2008) to
derive measurements of 11 major habitats.

Journal of Environmental Planning and Management 5
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The sampling design was based on the Biogeoclimatic Land Classification of
Spain, known by its acronym CLATERES (Elena-Rossello et al. 1997), constructed
using a divisive multivariate classification approach adapted from the CS land
classification system (Bunce et al. 1996a, 1996b, 1996c), applied to climatic,
physiographic and geological data. The construction was structured into two phases.
First, the whole Spanish Peninsula and Balearic Islands were classified into 13 classes
at 5 6 5 km resolution and then into 215 land classes with a greater resolution of
262 km. Soil type, vegetation class and land-use data were used for testing the
ecological value of the classes. CLATERES was used to compare with EnS in this
paper (Figure 4(a)).

Figure 2. Comparison of the environmental stratification of Sweden with the Environmental
Stratification of Europe (EnS) (a) The 10 classes of the National Inventory of Landscapes of
Sweden (NILS) (Esseen et al. 2006, Ståhl et al. 2011). (b) The 16 strata of the EnS (Metzger
et al. 2005) and (c) Map of consistency between (a) and (b).
Note: Please see online colour version for full interpretation.

6 M. Ortega et al.
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3. Statistical comparisons

The similarities between the different classifications were assessed using the Kappa
statistic, as defined by Monserud and Leemans (1992), ‘Equation (1)’. The same
approach was used by Lugo et al. (1999) to ‘verify and evaluate’ their classification
for the United States, and by Metzger et al. (2005) to compare the EnS with various
global classifications. Monserud and Leemans (1992) suggested that values of k 5
0.4 demonstrated ‘poor’ or ‘very poor’ agreement between raster maps, 0.4–0.55
‘fair’, 0.55–0.7 ‘good’, 0.7–0.85 ‘very good’ and 40.85 ‘excellent’.

k ¼ Oa� Eað Þ= N� Eað Þ; ð1Þ

where Oa is the observed count of agreement, Ea is the expected count of agreement,
and N is the total number of respondent pairs.

Figure 3. Comparison of the environmental stratification of Austria with the Environmental
Stratification of Europe (EnS): (a) Spatial Indices for Land Use Sustainability (SINUS)
(Peterseil et al. 2004). The 42 land classes were reduced to six classes in order to show the main
distribution patterns. (b) The 12 strata of EnS (Metzger et al. 2005) and (c) Map of consistency
between (a) and (b).
Note: Please see online colour version for full interpretation.

Journal of Environmental Planning and Management 7
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Figure 4. Comparison of the environmental stratification of Spain with the Environmental
Stratification of Europe (EnS): (a) CLATERES Biogeoclimatic Land Classification (Elena-
Rosselló et al. 1997) of the Spanish Rural Landscape Monitoring System (SISPARES) (Elena-
Rosselló et al. 2005). The 215 land classes were reduced to seven classes in order to show the
main distribution patterns. (b) The 33 strata of EnS (Metzger et al. 2005) and (c) Map of
consistency between (a) and (b).
Note: Please see online colour version for full interpretation.

8 M. Ortega et al.
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For the Kappa analysis, the datasets that are compared must have the same
spatial resolution, and distinguish the same number of classes or strata. To meet
these requirements, the national stratifications were resampled to the 1 km
resolution of the EnS and contingency tables were constructed in two stages, as
described by Bunce et al. (2002), to determine the classes on one map that
corresponded with classes on the other map. These tables provided the area
proportion of the national stratifications present in each of the EnS strata. The
highest proportion of the squares of each national stratum determined the EnS
stratum to which they were assigned. Some of the differences between classifications
are likely to be due to this process of data generalisation.

Although the Kappa statistic is used widely, it performs poorly when the
marginal distributions are unbalanced, in terms of the number of agreements of
correspondent pairs between classes and hence it has been the subject of various
critiques (Brennan and Prediger 1981, Agresti et al. 1995, Guggenmoos-Holzmann
and Vonk 1998, Nelson and Pepe 2000). Therefore, a second measure of agreement,
the Delta statistic, was used to assess agreement (Martin and Femia 2004). The Delta
statistic ‘Equation (2)’ also refers to the total proportion of agreements that do not
occur by chance. It is a valid option in the same cases as Kappa, being based on a
probabilistic model. The Kappa and Delta statistics generally take similar values,
except when the marginal distributions are strongly unbalanced, in which case the
Delta measurement better reflects reality (Martin and Femia 2004).

D ¼ kOa�Nð Þ= k� 1ð ÞNf g; ð2Þ

where k is the number of nominal classes, Oa is the observed count of agreement,
and N is the total number of respondent pairs.

To analyse the agreement between stratifications separately for each class or
stratum we also calculated an index based on Delta that is unbiased and
asymptotically normal. The consistency index (S) Equation (3) measures separately
the feasibility of an agreement between observers in a class when both of them are
not standard (those with the right responses). The consistency index S can be mapped
to give information on the spatial locations of the agreement between the two maps.

Si ¼ 2riDi= ri þ cið Þ; ð3Þ

where r and c are the observed count of agreement of the class i and Di the coefficient
Delta by class.

The software to calculate Kappa, Delta and the consistency index S by stratum
are available from http://www.urg.es/*bioest/Delta.exe.

4. Results

4.1. Great Britain (GB)

In GB, the contingency table of CS land classes compared with EnS strata produced
five groups from the original 40 land classes to statistically compare with five EnS
strata from the seven original strata that the EnS defines in Great Britain (Table 1).
The strata ATC4 and ATC5 in the extreme south of England had no correspondence
with any CS land classes, presumably because their affinity is with mainland Europe
and hence cannot be identified when GB data alone are used (Figures 1(a), 1(b)).

Journal of Environmental Planning and Management 9
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Kappa and Delta indicated ‘good’ correspondence (k ¼ 0.65 and D ¼ 0.63). The
values of consistency of CS vs EnS by class were higher than 0.50 for ATC2, ATC3 and
ATN1 strata and lower than 0.50 for ATN3 and ATN4 strata (Table 1). Therefore, the
map of consistency indicated that 44% of the total area of GB had high consistency
(higher than 0.50), 27% had low consistency (lower than 0.50) and 28% had no
consistency (Figure 1(c)). These latter areas are mainly situated in boundary zones.

4.2. Sweden

In Sweden, a contingency table of NILS land classes compared with EnS strata was
created by grouping the EnS strata because the number of classes of NILS is lower
than in the EnS. Table 2 shows the statistical comparison between these
classifications. The NILS class 3 (Götland north plain district) had no analogue
with any EnS strata, so the comparison was between nine classes of NILS and nine
groups of EnS from 16 original strata of EnS (Figures 2(a), 2(b)).

Kappa and Delta, indicated a ‘good’ correspondence between NILS classes and
groups of EnS strata (k ¼ 0.61 and D ¼ 0.63). The values of consistency by class were
high (40.50), except for class 7 (Norrland coast land) with BOR3 of EnS that was low
(50.50), but it covered less than 1% of the total area of Sweden. Therefore, 65% of the
total area of Sweden had high consistency, 1% low consistency and 34% no
consistency (Figure 2(c)). The difference in the number of classes in Sweden compared
with the EnS is likely to have contributed to this lack of consistency.

4.3. Austria

In Austria, the contingency table of SINUS land classes compared with EnS strata
produced seven groups of SINUS land classes that were identified with seven EnS
strata from 12 original strata of EnS (Table 3). The five EnS strata that had no
analogue with SINUS land classes are located near the Austrian state border. These
classes are ALS4, CON3, CON6, CON10 and MDM2 (Figure 3(a), 3(b)).

Kappa and Delta indicated a ‘fair’ correspondence (k ¼ 0.40 and D ¼ 0.39,
respectively). The consistency of EnS strata by class were high (40.50) in the EnS
strata ALS1 and PAN2 and low (50.50) in ALS3, ALS5, ASL6, CON2 and CON7.
The map of consistency of EnS strata vs. SINUS classes showed that 50% of the
Austrian total area had no consistency, 33% had low consistency and 17% had high
consistency (Figure 3(c)).

Table 1. Contingency table showing the proportion (61000) of the European Environmental
strata (EnS) (Metzger et al. 2005) in each of the five combination of the 40 Countryside Survey
(CS) land classes (Barr et al., 1993, Bunce et al. 1996a, 1996b). The measure of consistency of
each EnS stratum with groups of CS land classes is shown with their standard error.

CS/EnS ATC2 ATC3 ATN1 ATN3 ATN4

1–4,8,9,11–13 291 7 3 10 19
5–7 10 49 0 6 2
18,21,23,24,29,30 0 0 100 46 0
14–17,19,22,25–28,31–40 6 6 42 236 57
10,41 25 0 0 9 39
Consistency+S.E. 0.86+0.02 0.75+0.05 0.63+0.04 0.46+0.06 0.29+0.06

10 M. Ortega et al.
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4.4. Spain

In Spain, the contingency table grouped the 215 classes of the Spanish dataset into 27
groups of classes that corresponded with 27 EnS strata from 33 original strata of
EnS (Table 4). Therefore, there were six EnS strata without correspondence and
which were MDM9, MDM10, MDN8, MDN10, MDS3 and MDS8 (Figure 4(a),
4(b)). As in Austria and GB, these classes probably have their distribution centres
outside of Spain and there were therefore insufficient squares to build a comparable
Spanish class.

Kappa and Delta indicated a ‘good’ similarity for Kappa and Delta indices
(k ¼ 0.64, D ¼ 0.65). Therefore, 55% of the Spanish total area had a high
correspondence, 4% of areas had low EnS strata and 41% had no concordance
(Figure 4c). These final strata were mainly situated in boundary zones, such as in the
mountain range of southern Spain, in the Ebro basin and to the west of Spain close
to the border with Portugal.

5. Discussion

5.1. Does EnS distinguish regional gradients?

These results indicate that EnS distinguishes regional environmental gradients in the
majority of cases, and that it can overcome the boundary effects that inevitably exist
in national stratifications. However, some regionally important gradients are not
identified because the scale of these variations is too small at a continental scale.
Examples of national environmental gradients include the aridity gradient from
north to south in Spain, the humidity gradient of the UK from west to east, and
altitudinal gradients in mountain regions.

National and regional stratifications therefore help to expand the accuracy of
EnS by identification of local environmental gradients. In some cases it will be
necessary to divide the EnS strata in order to link them with national classifications.
A good example is the stratum ALS1 present in Austria covering a range of altitudes
from 630 m to 4453 m. The EnS strata correspond to two Austrian classes of
SINUS: ‘Rocks and glaciers of alpine highlands’ and ‘Seminatural and natural
grassland of alpine highlands’. Subdividing EnS strata using factors such as soil type
or altitude could add the necessary detail (Jongman et al. 2006, Hazeu et al. 2011) to
resolve differences in the comparison.

5.2. Limitations to the statistical comparisons

Statistical map comparisons provide quantitative measures to help assess the
similarities between maps. Here, these measures were used to assess the capability of
the EnS to reflect regional gradients. However, there are a number of other factors
that can lead to differences between the classifications.

National boundaries affect zones with contrasting environmental conditions near
national borders, which are related to larger adjacent zones. Such regions are often
not identified as separate strata in national datasets. Examples given above include
southern England, which is more closely related to environmental conditions in
France, and parts of Spain that share characteristics with Portugal and northern
Africa. These boundary effects have been discussed by Parry et al. (1996) and Bunce
et al. (2002) and strongly affect the similarity statistics.
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Differences in spatial resolution between two classifications also affect the
similarity indices. When the resolution of the EnS (1 km) is coarser than the
resolution of the national classification, then the loss of detail will lower the degree of
similarity, which would then be underestimated. This is the case for SINUS
(Austria), which has a 1 ha resolution. By contrast, in the reverse situation the
similarity would be overestimated, as in the cases of Sweden (5 6 5 km resolution)
and Spain (2 6 2 km resolution). Only the GB classification has the same resolution
of 1 km as the EnS.

The aggregation of the classifications to achieve an identical number of strata in
the Kappa analysis results in a simplification and loss of detail in the datasets that is
not expressed in the Kappa and Delta statistics. For example, the high Kappa and
Delta values in Spain ignore the fact that 215 national classes have been aggregated
into 27 groups of classes, with obvious loss of information. However, the aim of this
study is to illustrate that the national stratifications can provide additional detail to
enrich the EnS.

Finally, differences in classification methods and the input data will influence the
stratifications. The EnS is based on climatic variables, while in Sweden socio-economic
factors were included and in Austria land use information. Therefore, there will be
inevitable differences between the European and national datasets. However, Bunce
et al. (2002) compared several national environmental classifications with an earlier
European environmental classification and showed how the core of strata remained
stable. These results are amplified by the further detail provided in the present paper
which confirms that, although there are differences in detail, statistical stratifications
have much in common even although different scales may be involved.

5.3. The potential for integration into a European monitoring framework

As outlined in the introduction, policy commitments and ecosystem management
require reliable monitoring data from large areas to make informed decisions (Parr
et al. 2002, 2003, Pereira and Cooper 2006). Integration of ongoing national and
regional monitoring activities (Schmeller et al. 2006) is crucial to ensure cost-
effectiveness and gain policy support among countries. This is especially important
when patterns of change follow environmental gradients, as is the case with climate
change (Gitay et al. 2002, Metzger et al. 2008).

Within EBONE, the EnS is used as a framework to integrate disparate sources of
biodiversity data. These include connectivity and phenology analyses using remote
sensing techniques, habitat information derived from statistically designed field
surveys (Bunce et al. 2008), and information about species distributions. The result
will provide a coherent picture of the current state of European biodiversity.

The similarity between the EnS and national stratifications presented in this
paper support the possibility of integrating national monitoring activities within
EBONE. Despite inevitable differences, the EnS recognised the broad patterns
discerned by the national stratifications, and national samples can therefore be
associated with European strata. The implication is that some regions could be over-
sampled, but this effect will be minimised when linked to the strata. The EnS is
envisioned as the geographic sampling and reporting framework for EBONE, and
will underpin the formal sampling design allowing for integration with existing
programmes, and meeting information requirements of end-users to support the
successful management of biodiversity and ecosystem resources.

16 M. Ortega et al.
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Notes

1. When a classification is specifically designed to divide gradients into relatively
homogeneous groups, the present paper uses the term ‘stratification’.

2. See http://www.countrysidesurvey.org.uk/
3. EBONE (European Biodiversity Observation Network), a Framework Programme 7

aimed at developing a cost effective system for biodiversity data collection at regional,
national and European levels. Available from: http://www.ebone.wur.nl/
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