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Abstract: A workflow for combining airborne lidar, optical satellite data and National Forest 

Inventory (NFI) plots for cost efficient operational mapping of a nationwide sample of 5 × 5 km 

squares in the National Inventory of Landscapes in Sweden (NILS) landscape inventory in 

Sweden is presented. Since the areas where both satellite data and lidar data have a common 

data quality are limited, and impose a constraint on the number of available NFI plots, it is 

not feasible to perform classifications in a single step. Instead a stratified approach where 

canopy cover and canopy height are first predicted from lidar data trained with NFI plots is 

proposed. From the lidar predictions a forest stratum is defined as grid cells with more than 

3 m mean tree height and more than 10% vertical canopy cover, the remaining grid cells are 

defined as open land. Both forest and open land are then classified into broad vegetation 

classes using optical satellite data. The classification of open land is trained with aerial photo 

interpretation and the classification of the forest stratum is trained with a new set of NFI plots. 

The result is a rational procedure for nationwide sample based vegetation characterization.  
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1. Introduction 

The National Inventory of Landscapes in Sweden (NILS) is a sample based nationwide landscape 

inventory [1,2]. The aim of NILS is to be a data source for monitoring the fulfilment of some of the Swedish 

national environmental objectives [3], as well as for international habitat reporting and for research. The 

NILS program is carried out by the Swedish University of Agricultural Sciences (SLU) on behalf of the 

Swedish Environmental Protection Agency.  

NILS data are collected from a stratified sample of 631 clusters. Each cluster contains 12 field surveyed 

sample plots within a 1 × 1 km square that is photo interpreted. Data interpreted include tree height; canopy 

cover above 3 m; canopy cover of bushes and small trees below 3 m; ground vegetation classes, and many 

more variables, for example, site moisture, tree species, spatial distribution of trees (clustered or spread out), 

coverage of water vegetation, aiming to describe the potential for biodiversity. The 1 × 1 km square is 

surrounded by a 5 × 5 km square (Figure 1). This larger square has so far mainly been used as a sampling 

frame for special inventories. The original ambition was, however, to also do a photo interpretation of 

the 5 × 5 km square, in order to obtain data that could be used for providing the landscape context to the 

data collected in the field and in the inner square. Visual interpretation of the 5 × 5 km squares has however 

proved to be too time consuming and thus costly. There is therefore a need to evaluate more automated 

and cost efficient methods for mapping the nationwide sample of the 5 × 5 km squares. One potential data 

source is optical imagery from earth observation satellites such as SPOT or Landsat, which have been 

much used for land cover classifications in the past [4–8]. 

 

Figure 1. Illustration of the National Inventory of Landscapes in Sweden (NILS) design. The 

631 clusters are systematically sampled with different densities in 10 different strata. For 

each cluster 12 sample plots are visited in situ and a central 1 × 1 km square is photo 

interpreted. An outer 5 × 5 km square is supposed to contribute with data about the 

surrounding landscape. No coordinates are shown here as the position of individual NILS 

squares are confidential to assure that the permanent sample sites are not intentionally 

tampered with in any way. 
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A nationwide scanning with airborne lidar is currently being carried out in Sweden [9]. Although 

primarily collected for the purpose of constructing a new national terrain model (or digital elevation model; 

DEM), the collected lidar data is also used by SLU on behalf of the Swedish Forest Agency for constructing 

a nationwide forest database [10]. Furthermore, it has been shown in earlier studies that lidar data is an 

excellent complement to optical satellite data for land cover classification, especially for the characterization 

of tree vegetation [11,12]. 

In order to minimize the need for new field reference plots, existing plots should be used as much as 

possible; in order to obtain enough plots as reference data, gathering plot data over large areas must often 

be done. It has been demonstrated in previous studies that metrics derived from different lidar scanners, 

and acquisitions from seasons may have differing properties [13,14]. However, the areas where satellite 

data have been acquired under homogeneous conditions (same sensor, acquisition date and atmospheric 

conditions) which overlap with lidar data acquired under homogenous conditions (e.g., same scanner 

and season) tends to be too small for obtaining enough existing ground reference plots (Figure 2). It 

may, therefore, be necessary to investigate a stratified approach where laser scanner data are used first 

for estimation of canopy cover and tree height, and then satellite data are used for classification of 

vegetation types within different the strata defined from the laser data based predictions. 

 

Figure 2. Schematic illustration of the stratified approach for best utilization of existing field 

data and remote sensing data in large area operational studies. The blue rectangle represents a 

satellite data scene, the red rectangle is the area with laser scanner data acquired with the same 

sensor and during the same season and the dots represent clusters with existing field reference 

plots. When the lidar and satellite data are analyzed together, the plots marked in black show 

the field reference plots that could be used, whereas all plots covered by the respective data 

sets (black and green) could be used in the stratified approach where the data sets are analyzed 

in sequence. 

The aim of the present study is to develop and evaluate a cost efficient method for semi-automated 

mapping of the nationwide sample (n = 631) of NILS 5 × 5 km squares by using the combination of 

airborne lidar data and optical satellite data (Landsat 8 and SPOT 5). Variables of interest are height and 

coverage of trees and bushes as well as broad vegetation types such as graminoids, dwarf shrubs and 

ground lichen dominated areas. Among the factors that need to be handled in this study are that different 
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satellite scenes usually have an individual radiometric scaling and that the national set of lidar data are 

acquired with different scanners and during different seasons. Furthermore, in order to make upscaling to 

the national level economically feasible, existing field data should be used as much as possible and 

additional manual collection of reference data must be kept to a minimum. Thus, for classification of a 

given grid cell, reference data must be acquired either in the often limited area where both the used data 

sets overlap, or in a sequence, using a stratified approach.  

2. Material 

2.1. Study Area  

The study area is located in the southwest of Sweden and is defined by three contiguous Landsat 8 

Operational Land Imager (OLI) scenes acquired on the 23 July 2013 (Figure 3). This is done to simulate 

the approximate area covered by a future scene from the upcoming Sentinel-2 satellite which will have a 

scene size of 290 km by 290 km [15]. The area is large enough to contain various types of landscapes, such 

as coastal areas, and areas dominated by forest or agriculture. The forest is mainly dominated by 

managed coniferous forest of Norway spruce (Picea abies) the second frequent species is Scots Pine 

(Pinus sylvestris), but areas with broadleaved species forest are also present and of interest for 

biodiversity. In the open landscape ploughed fields dominate, and less intensively exploited open land 

is less frequent. 

 

Figure 3. The study area in southwestern Sweden, defined by the extent of three contiguous 

Landsat 8 images. The lidar blocks are marked in red and the NILS squares are marked in blue. 
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There are 106 NILS squares partly or completely within the Landsat scenes, of which two consisted of 

only a small proportion of land and were therefore not included in study. After removing NILS 5 × 5 km 

squares not completely covered by the Landsat scenes (5 squares), squares covered by clouds in the 

Landsat scenes (7 squares), squares scanned with more than one type of laser scanner, and squares acquired 

during different seasons or the laser data not delivered yet (22 squares), 68 squares remained. The above 

mentioned special cases (36 squares) will need to be handled in a future operational phase, but were left 

out during the method development phase. 

2.2. Field Plots from the NFI and NILS within the Study Area 

Two nationwide sample based inventories gather field plot data over the Swedish landscape: The 

Swedish National Forest Inventory (NFI) [16] and the National Inventory of the Landscapes in Sweden 

(NILS). The NFI plots are placed in rectangular clusters of two types: permanent clusters with 10 m radius 

plots revisited every 5 years and temporary clusters with 7 m radius plots. In total over 10,000 plots are 

surveyed annually by the NFI. While NILS focuses more on potential for biodiversity, the NFI is mainly 

focused on productive forests and does not cover the mountainous areas in the northwest of Sweden. An 

initial sample of 4117 NFI plots was selected from within the study area. Of these 2518 were temporary 

plots with 7 m radius and 1536 were permanent plots with 10 m radius and each tree positioned relative 

to the plot center. The coordinates for the center of the plots are positioned with GPS having about 1 m 

horizontal accuracy for most of the permanent plots and about 5 m horizontal accuracy for most of the 

temporary plots. The NFI is focused on obtaining measurements for trees, and could be used as field 

reference for tree height, canopy cover and tree species classification. Only a proportion of the permanent 

NFI plots contain detailed data about the field layer vegetation, with a total of 604 for the test area. In the 

open land, NFI plots with detailed ground vegetation data were available for only 22 mire plots. Thus, the 

NFI plots were considered suitable for estimation of canopy cover, tree height and classification of the 

forest strata, but not for classification of the open land strata. 

The total number of NILS squares in the test area was 104, which in total contained 1248 plots. Some 

plots had however not been visited in the field, such as gardens and areas with growing crops. Furthermore, 

plots split by different types of land cover were not used, because the remote sensing signatures are expected 

to be a mix of different classes. Parts of the NILS squares in the area were also covered by clouds and had 

to be removed from the test. Possible training data left from NILS was then 587 plots of which 85 had 

canopy cover of less than 10% (from subjective field estimates). Plots on ploughed fields could not be 

used because of the rapid changes (i.e., seasonal planting and growth) of the vegetation. Clear-cuts are best 

mapped from multi-temporal images, which was done using visual interpretation as reference data. Plots 

on clear-felled areas were therefore not included as reference data. After removing clear-cuts and ploughed 

fields the total number of remaining plots suitable for use as reference data in the classification of open 

land was only 58, which was considered too limited a sample. 

2.3. Satellite Data 

The satellites scenes used in the project were geometrically precision corrected optical images from  

the Swedish satellite data archive SACCESS [17] (Table 1). No atmospheric correction to reflectance was 

done on the Landsat-8 images since the satellite data used were acquired on the same date. To perform 
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change detection, histogram-matching of the SWIR band from the SPOT-5 scenes acquired on multiple 

date was used to account for radiometric differences. This was followed by subtraction of the earlier date 

image band from the later date and applying a threshold to detect clear-cuts. 

Table 1. Satellite scenes used in the development project. 

Satellite and Sensor Path/Row Date Pixel Size Used for 

Landsat 8 OLI 195/19-21 2013 July 23 30 m Tree species classification 

SPOT 5 HRG 054/235 2005 June 29 10 m Change detection 

SPOT 5 HRG 053/234 2011 June 29 10 m Open land classification and change detection 

2.4. Lidar Data 

The lidar data used in the project were acquired by the Swedish National Land Survey [9], primarily 

for construction of a new national DEM. This national scanning started 2009 and is scheduled to conclude 

in 2015. The maximum scan angle is 20 degrees and the average number of return pulses is commonly 

around 0.7 returns per square meter. The scanning is done in blocks with the nominal size of 25 × 50 km. 

The aim (when possible) has been to scan each block with the same scanner, during as short a time period 

as possible. The different blocks are however acquired with different scanners and during different seasons 

and years. Most of the scannings in the study area were made with Leica scanners, but also Optech scanners 

were sometimes used. Within the study area there are 59 lidar scanning blocks, with the data being 

acquired mainly during 2010 and some during 2011 and 2012. Scanning during both leaf-on and  

leaf-off conditions and with different scanner types are present in the area.  

In-house developed programs were used to pre-process the lidar point cloud. Scans from different flight 

strips overlap and only data from the strip with the lowest scanning angle were selected for each pixel. 

Height above ground was calculated for each point and the DEM created by the Swedish National Land 

Survey was used as ground references. The FUSION software [18] was used to compute metrics for the 

laser points above the ground elevation model for 12.5 m by 12.5 m grid cells. Metrics used were height 

percentiles and ratios of number of returns above a specified height. 

2.5. Digital Aerial Photos and Map Masks 

Sweden is being covered with digital aerial photos on a regular basis, with an average of every second 

year for Southern Sweden. Color infrared photos acquired by the Swedish National Land Survey [9] were 

used for interpretation of subjectively located training areas for open land. The photos were taken with the 

Z/I DMC camera at 4800 m above ground used, resulting in a pixel size of 0.5 m for the panchromatic 

band. In addition, map masks from the Swedish National Land Survey were used for delineation of urban 

areas and arable land. The map used was the Swedish property map, made for viewing at a scale of 

1:10,000 showing detailed information of property borders and the landscape. The map masks were 

checked and adjusted by stereo air photo interpretation. 

3. Methods 

The method used for classification of the NILS square follows a stratified approach (Figure 4). Laser 

scanning data were used in a first stage to make predictions of height and canopy cover for laser scanning 
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blocks. Predictions were then used to separate open land from tree-covered strata, then classify both 

separately using different training data sets. 

 

Figure 4. Proposed workflow to classify a group of NILS 5 × 5 km squares. Left box 

contains the workflow for lidar predictions which uses only existing field data from NFI and 

NILS. Right box contains the workflow for predictions from optical satellite data. Red arrow 

indicates negative answers and green positive. 

3.1. Prediction of Tree Heights and Canopy Cover from Lidar Data Trained with NFI Field Plots 

In the NILS design, mean tree height and canopy closure are key variables controlling workflow and 

variables acquired. The proposed automated workflow in the 5 × 5 km square follows the same structure. 

In NILS’ interpretation of the 1 × 1 km sample frame, canopy cover is defined as canopy cover ignoring 

within crown gaps, and tree height is defined as basal area weighted mean tree height. From the 59 lidar 

blocks within the test area all blocks that were scanned during more than one season or with more than 

one scanner brand or to a greater extent covered by clouds in the optical image were excluded from the 

analysis, leaving 41 blocks to predict. For each block, regression models for prediction of canopy closure 

and mean tree height were estimated using NFI plots as reference data and lidar metrics as independent 

variables. The aim was to gather at least 250 sample plots from the NFI for the training of each regression 

model. To cover a large enough area, adjacent blocks scanned in the same season (leaf-off or leaf-on 

season) with a scanner from the same manufacturer (Leica or Optech) were also used. Primarily, blocks 

within as near a distance as possible were selected, and the distance from the plots used to the center of 

the predicted block seldom exceeded 150 km. If the maximum distance exceeded 100 km, both 

permanent and temporary plots were used; otherwise, just permanent plots were used. From these 

selected blocks, plots which were field inventoried within a maximum of 5 years from each block’s 

scanning date were used to build the regression models. Forecast models for forest growth implemented 

in the Heureka forest planning system [19] were used to calculate the state of the forest at the respective 

year of the scanning for each plot.  

Stem diameter to crown radius relationships using data from the NFI [20] were used together with 

known tree positions and stem diameters to calculate the proportion of canopy cover on the plots. The 
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proportion of canopy cover was calculated on an inner 7 m radius circle to reduce effects of trees outside 

the plot with canopy reaching inside it. Small trees (<100 mm dbh) are measured on a smaller plot (3.5 m 

radius) in the NFI. Thus, the same density and diameter distribution of small trees in the 3.5 m radius plot 

was assigned to the full 10 m plot. Trees with stem diameter less than 40 mm are only calipered on two 1 

m radius sub-plots within each NFI plot. The contribution to the total canopy cover from trees smaller 

than 40 mm in diameter was considered to be too small and was therefore not used. The method was 

then used for assigning canopy cover estimates to the NFI plots in the study area.  

The canopy cover on the NFI plots is also subjectively estimated by the field personnel. Earlier  

results [21,22] show a good correlation with proportion of laser returns in the vegetation, and the subjectively 

estimated reference data were considered less accurate and therefore not used. Instead, the above described 

procedure with simulated canopy cover based on stem diameters and stem positions were used. Canopy 

cover and mean tree height for the 12.5 × 12.5 m raster cells within the NILS 5 × 5 km squares in the test 

area were then predicted using regression analysis. 

Lidar data were extracted for each of the NFI plots in the test area. The FUSION software [18] was then 

used to calculate numerous metrics for each plot. Based on results from previous studies [21–24] a subset 

of these metrics was tried in regression analysis. The selected metrics were height percentiles and ratios of 

returns from vegetation above a specified threshold (vegetation ratios). The same explanatory metrics were 

selected for model use in all of the blocks, but regression parameters estimated for each block separately. 

The models of mean tree height used percentile 95 from laser data as an explanatory variable. Vegetation 

ratio over 1.5 m was chosen for all regressions predicting canopy cover. Vegetation ratios with different 

thresholds were tested, but because the difference among the ratios using different thresholds was very 

small selecting one threshold for all blocks seemed sufficient. Regression models were evaluated using 

leave-one-out cross-validation. 

3.2. Classification within Tree Covered Stratum Using Optical Satellite Data 

The lidar predictions of tree height and canopy cover were used to stratify the NILS 5 × 5 km squares 

in the test area into open land and forest areas, where forest was defined as having more than 10% canopy 

cover and trees over 3 m in height. Built up areas and arable land were separated from forests using map 

masks from the Swedish National Land Survey in some cases refined by visual interpretation in stereo 

color infrared aerial photos.  

Within the forest stratum, a classification of tree species groups (broadleaved species or coniferous 

species dominated forest) was done, and for the open land stratum, a classification of ground vegetation 

was done. Each stratum was classified separately and with different sets of training data. 

The tree species-group classification was trained with NFI plots for the whole test area. Plots above the 

defined thresholds of 10% canopy cover and 3 m tree height were used, and broadleaved vs. coniferous 

dominated forest was defined as having more than 50% of the total basal area on the plots of that particular 

class. The training data were first screened for outliers using scatterplots and visual interpretation of 

orthophotos. The total amount of plots left for classification, after obvious outliers like clear-felled forest 

and cloud covered areas had been removed, was 1186 of which 191 contained broadleaved species 

dominated forests. 
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The classification was done using the Random Forest algorithm, as implemented in the R statistical 

package [25]. The number of trees in the algorithm was set to 500 and the number of variables to try at 

each tree varied between 2 and 4. The imbalanced proportions of classes in the training data was handled 

by down sampling of the coniferous class, and final proportions were set to minimize the imbalance in the 

errors of omission and commission in the broadleaved species dominated class. No independent evaluation 

data were available, and because of the scarcity of broadleaved species forest in the training data, the data 

set could not be split into validation and training data sets. Therefore, the out of bag evaluation of error 

included in the Random Forest algorithm had to be used. Prediction of tree-species class was done for the 

5 × 5 km squares in the test area. 

3.3. Classification of the Open Land Stratum Using Optical Satellite Data 

Based on the classes used in the manual interpretation of NILS 1 × 1 km squares, a classification 

system for the open land was developed based on spectral separability. The classes were non-vegetated; 

dwarf shrubs (mainly Erica spp and Vaccinium); grass/herb/bushes and/or small trees below 3 m; clear 

cuts; and water. The criterion for the classes were that they should have a dominance (>50%) of the 

respective vegetation class, except for dwarf shrubs which could be dominated by grass if only at least 25% 

was covered by dwarf shrubs. Clear cuts were defined as being cut during the last 5 years. Classification 

of open land was much more time consuming than classification of the tree covered stratum and was 

thus only tested for a subset of the NILS 5 × 5 km squares in the test area. 

For the open land stratum, the availability of existing field plots available for use as reference data 

was considered to be too few to fully represent all vegetation classes. Stratification on open land would be 

sub-optimal for other aspects of the NFI or NILS inventory, thus a separate collection of field data for the 

open land stratum had to be done as part of the satellite image classification effort. Visual air photo 

interpretation in stereo of subjectively selected reference plots was used for the open land classification. 

The satellite data used in the test of the open land classification was SPOT 5 HRG images, resembling 

the spatial resolution of the upcoming Sentinel-2 satellite but having smaller scene extents. At least 10 

reference plots for each class were subjectively selected. Each plot was 30 × 30 m, corresponding to nine 

SPOT 5 pixels.  

Map information from the Swedish National Land Survey’s property map was aggregated into groups 

for the open land strata, such as lakes, arable land, built up areas, wetland, and other open land. Arable 

land and built up areas were masked from the satellite images and not classified. Some refinement of the 

map information had to be done using manual photo interpretation, for example, delineation of all built up 

areas and refinement of the open land was done. For the remainder of the open land stratum, maximum 

likelihood classification was used. The map stratum of wetland as well as that for other open land was 

classified separately as a way of incorporating map information into the classification. 

Recent clear-cuts are of interest to map due to the different habitat quality they provide, and are best 

mapped using change detection with multi-temporal satellite images. This was tested using an older SPOT 

image over one of the test squares where open land classification was done. By subtracting the SWIR band 

from different images and applying a subjectively selected threshold to the difference, clear cuts and other 

changes were mapped. After eliminating changes occurring in fields and open wetlands, the remaining 

changed areas were assessed to be mainly clear-felled areas.  
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Finally, the classifications of forest and open land, as well as the areas excluded from classification and 

the detected clear-felled areas were combined for each evaluated NILS 5 × 5 km square. An independent 

validation of the open land classification was done for one of the NILS squares, using validation data 

collected by stereo photo interpretation. In this process, 200 plots were allocated systematically. If at 

least six of the nine SPOT pixels in the plot were of the same vegetation class, the plot was assigned that 

vegetation class. 

4. Results 

The accuracies of tree height predictions varied between 10.3% and 15.1%, measured as relative RMSE 

obtained by cross validation. Evaluations using independent data sets from other parts of Sweden where 

the same data and code have been used to produce tree height estimates show similar or slightly better 

results [10]. For heights below 3 m there was a tendency for the percentiles to be close to or at zero meters 

above ground.  

Canopy cover estimates based on stem diameters and tree positions were evaluated for the detailed field 

material collected in [21]. The results for the test set of 28 plots were an RMSE of 8.2% and a positive bias 

of 3.9%. The lidar based predictions of canopy cover using NFI plots showed cross validation results 

between 19.9% and 28% relative RMSE. The worst accuracies were obtained from laser scanning blocks 

scanned during leaf-off conditions and with a large proportion of broadleaved species dominated plots in 

the training data. Scatterplots indicated an under-estimation of canopy cover for broadleaved species forest 

when the scanning was done during leaf-off condition.  

The tree-species group classification showed good results. Users and producers accuracies from  

leave-one-out cross validation were found to be lower in the broadleaved species group as a result of the 

imbalanced reference data set (Table 2). The different balanced reference data sets showed different results 

and the sample of 350 coniferous and 170 broadleaved species dominated reference plots was the one 

with the most balanced errors of omission and commission for the broadleaved species class.  

Table 2. Accuracy for Random Forest classification of broadleaved or coniferous species 

dominated forest in the tree covered stratum, using different independent variables and 

training data. Sat means optical satellite data, NDVI is Normalized Differential Vegetation 

Index, and Canopy Cover (CC) is predicted from cross validation in the regression models. 

The numbers in the variable combination column indicates the number of reference data plots 

(no. coniferous/no. broadleaved) drawn for each tree in Random Forest classification. 

 User’s Accuracy (%) Producer’s Accuracy (%) Overall Accuracy (%) 

Variable Combination: 
Broadleaved 

forest 

Coniferous 

forest 

Broadleaved 

forest 

Coniferous  

forest 
 

Sat (300/150) 74 97 85 95 93 

Sat (250/170) 71 98 89 93 92 

Sat + NDVI (250/170) 71 98 88 93 92 

Sat + CCpredicted (250/170) 72 98 89 93 93 

Sat (350/170) 75 97 84 94 93 

Sat + NDVI (350/170) 75 97 82 95 93 

Sat + CCpredicted (350/170) 75 97 84 94 93 
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A confusion matrix for the classification of the open land stratum together with the tree covered 

stratum is shown in (Table 3). The tree covered stratum was included as one single class, for evaluation 

of the possible confusion between the different strata. 

Table 3 Evaluation results for a NILS 5 × 5 km square. The tree covered stratum that was 

separated by threshold in lidar predictions of height and canopy cover is included as a  

single class. 

Reference Data Class  

Classification Result 
Tree Covered 

Strata 
Grass/Herbs/Shrubs 

Dwarf 

Shrubs 

Clear 

Cuts 
Non-Vegetated Water 

Users 

Accuracy 

Tree covered strata 73      100% 

Grass/Herbs/Forbs/Shrubs 1 10     91% 

Dwarf shrubs  3 11    79% 

Clear cuts  1  4   80% 

Non- vegetated     0   

Water      5 100% 

Producers accuracy 99% 71% 100% 100%  100%  

Overall accuracy: 103/108 = 95%  

5. Discussion 

In an operational inventory, cost and time consumption are main constraints to be considered;  

these are factors which are not always of importance in scientific studies for limited size study areas.  

By incorporating remote sensing, mapping of the NILS 5 × 5 km squares can be done efficiently. The 

most time-consuming task is then to gather reference data for the predictions, quality checking and 

correcting errors, and adding desired data that cannot yet be predicted automatically (for example land 

use information). The conclusion was that an efficient system had to be built, and as many resources as 

possible had to be saved for the time consuming yet important tasks of correcting errors and adding 

necessary additional data. In this project a main aim has therefore been to find existing suitable reference 

data. At first, the polygons from the NILS 1 km × 1 km squares were tested as training data. It was soon 

evident that the polygons were not suitable. A minimum mapping unit is used [26], and a portion of the 

polygons are therefore a mix of different classes causing confusing values in the remote sensing data. 

The classification of open land classes showed good accuracies. Although the evaluation data set was 

very small, it gives an indication. In particular, the tree covered stratum increases the overall accuracy. 

The stratification into open land and tree covered strata were based on lidar data, which is well known 

for strength in characterizing the height and density of trees. The stratified approach with separate 

classifications of the open land and forest strata will allow classification of more classes than described 

in this paper. In the work done here, a few classes were selected in order to be more accurate and to reduce 

time consumption in gathering of training data. In the nationwide classification described in [5], a map 

mask was applied to Landsat data to separate forest from other cover types. The Landsat data in the forest 

stratum were then classified into coniferous, mixed and broadleaved species dominated forest as well as a 

number of forest classes based on height. NFI data were also used as reference data in this case, but the 

classification used spectral models and Maximum Likelihood with prior probabilities rather than the 
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Random Forest algorithm used here. A stratification of forest and non-forest areas was also used in [27], 

and along with multi-seasonal satellite data, allowed more detailed tree species classification.  

There is more information desired by stakeholders to be mapped in the NILS 5 × 5 km squares than can 

be predicted with the methods used here. Time series of previous remote sensing data can probably also 

provide information on the history of the different habitat, which in some cases can be important. Potential 

further development could, for example, be to map clear cuts from optical satellite data available from the 

1970s and onward to provide some information on time since disturbance in the forest ecosystem [28]. 

An interesting phenomenon was found in forest covered pixels at the very edge of some lakes. The 

prediction of canopy cover was much higher compared to just one pixel further away from the lake. Some 

values were out of the range for the model and predicted over 100% canopy cover. These pixels were 

clearly over estimated, but no sufficient amount of evaluation data was available to fully investigate the 

effect. The effect was only present in some of the laser scanning blocks in the test area. After examining 

the point cloud a reasonable explanation was found. The point cloud lacked laser returns from the water 

surface, but not from the vegetation. When the canopy reaches out over the water, returns are registered 

from the vegetation only; the vegetation ratios were therefore higher than in the rest of the landscape 

given the same canopy cover. Since the border to water is of special interest for biodiversity and nature 

conservation, efforts were made to find ways to correct this but with little success.  

An initial expectation was to be able to predict presence of lower-growing vegetation such as shrubs 

and small trees (below 3 m). The shrub/small tree cover from photo interpreted plots on subjectively 

selected sites in homogenous areas was compared to laser metrics. A very low correlation between 

presence of shrub/small trees and the laser metrics was found for all test sites, which was surprising 

given the good results in predicting canopy cover for taller trees. It should be kept in mind that the laser 

data were acquired with different scanners, and varying results may be due to the scanner that was used. 

It was seen that dense vegetation resulted in very few returns in the point cloud, giving vegetation ratios 

near zero. The reason for this might be that returns from low vegetation are mixed with the return from 

ground. Further studies that have used data from the Swedish national laser scan have shown similar 

results [10]. The lack of laser data at these lower heights is a likely influence on estimates for vegetation 

less than 3 m. 

Over all, the experiences from this study showed that time efficiency in an operational classification 

system for a monitoring program like NILS is an essential component. The method developed here 

(Figure 4), where existing reference data are used as much as possible, seems to fulfill this.  

It currently appears that the national laser scanning in Sweden is a one-time effort. NILS is an 

environmental monitoring program and needs updated predictions. Optical satellite data will be available 

and in particular Sentinel-2 data seem promising. The Swedish National Land Survey carries out aerial 

photography missions aiming to cover the entire country with two to six year intervals. During 2015 

replacement of the lidar data with 3D point clouds from matched digital aerial photographs will be tested 

for estimates of height and canopy cover. Earlier studies where the use of photogrammetric point clouds 

has been evaluated show promising results for tree height predictions [29,30] but somewhat weaker results 

are expected for canopy cover and variables that depend on the density of the forest, such as basal area. In 

addition, in 2015, the earlier mentioned Sentinel-2 is expected to be launched, providing a new source of 

data that should be evaluated. 
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