
Parallel computations in R

Introduction

In this exercise we will have a look at how to run parallel computations in R, i.e. how to run multiple
computations at different cores of your CPU at the same time. Doing your computations in parallel can be
worthwhile if you do many similar time-consuming computations. For example, if you want to evaluate the
behaviour of your complex models in a large number of simulations, or if you want to run a complex model
for a large number of datasets, e.g. for different stations, areas, or variables.

Make sure you have installed and loaded the following packages:
library(tidyverse)
library(mgcv)
library(furrr)

In the exercise “Chlorophyll: group_by - filter - summarize - map” we saw how map could be used to apply
the same function to several different datasets. The furr packages lets us run such computations in parallel,
using a new function called future_map, which is used analogously to map. After loading the package, we
run plan to set the number of parallel workers to use, i.e. how many computations to perform at a time. For
instance, if we want to use 3 cores in parallel:
plan(multisession, workers = 3)

Simulate data

First, we start by creating a function that simulates a sine-function and adds a random error term with a
standard deviation of 0.1. We create 1,000 such datasets using map, and then merge them to a data frame
called df, where the variable subs indicates which dataset each row belongs to.
simulate_sin <- function(a){

x = 1:100
y = sin(seq(0, 5*pi, length.out = 100)) + rnorm(n=100, mean = 0, sd=0.1)
return(data.frame(x,y))

}

alldata <- map(1:1000, simulate_sin)
df <- data.frame(do.call(rbind, alldata)) %>%

mutate(subs = rep(1:1000, each = 100))

Fitting models to subsets in parallel

Now, we fit a GAM (generalized additive model) to each dataset. We use gam to fit the model, and map to
apply this function to each subset of the data. gam is wrapped in possibly, which means that R won’t stop
if there is an error in one of the iterations. We use the system.time function to check how long this takes to
run (expect it to take a minute or so, depending on how fast your computer is):
system.time(
df1 <- df %>%
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group_by(subs) %>%
split(.$subs) %>%
map(possibly(~gam(formula= y~s(x), data=.x, method="REML", select=T),

otherwise = NA_real_)))

The time is presented using three measurements: user time is the CPU time charged for the execution of
user instructions of the calling process, system time is the CPU time charged for execution by the system on
behalf of the calling process, and elapsed time is how long the code chunk took to run.

To run the same computations in parallel, we replace map by future_map:
system.time(
df2 <- df %>%

group_by(subs) %>%
split(.$subs) %>%
future_map(possibly(~gam(formula= y~s(x), data=.x, method="REML", select=T),

otherwise = NA_real_)))

As you can see, the computations run faster in parallel. If you have a CPU with a high number of cores,
you can increase workers in plan even more, and increase the speed further. To see how many cores are
available on your system, run:
availableCores()

It is generally a good idea not to use all your cores for the parallel computations - at least one will always be
needed for other tasks (running RStudio, your operating system, other applications, etc.).

Exercise Use map2, future_map2 and predict to make predictions for each subset in df, using the fitted
model corresponding to each dataset.

Running for loops in parallel

for loops are used for iteration, like in this example:
# Non-parallel for loop:
loop_output <- rep(NA, 9)
for(i in 1:9)
{

loop_output[i] <- i^2
}

The foreach and doParallel packages allow you to run for loops in parallel using foreach. Unlike base
R’s for loop,s the output from each iteration is stored in a list. Here is an example:
# Parallel version:
library(foreach)
library(doParallel)
registerDoParallel(3) # Use 3 cores

loop_output <- foreach(i = 1:9) %dopar%
{

i^2
}

loop_output # The output is stored as a list
unlist(loop_output) # Turn it into a vector instead
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Note that the list needn’t be ordered by the iteration index - it is possible that the computation for i=5
finished before the computation for i=4, in which case the result for i=5 will appear in the list before the
result for i=4. In this case, and in other cases where the output from each iteration is a vector rather than a
scalar, we can collect the output in a matrix using matrix:
loop_output <- foreach(i = 1:9) %dopar%
{

c(i, i^2) # Save both i and i^2
}

loop_output
# Convert to a matrix with 9 rows and 2 columns:
matrix(unlist(loop_output), 9, 2, byrow = TRUE)

Further examples on parallelisation can be found in Chapter 6 of Modern Statistics with R.

Solutions to exercises

First, we fit the models as before:
models <- df %>%

group_by(subs) %>%
split(.$subs) %>%
map(possibly(~gam(formula= y~s(x), data=.x, method="REML", select=T),

otherwise = NA_real_))

Next, we split the dataset into subsets, and use map2 to make predictions for each subset:
split_data <- df %>%

group_by(subs) %>%
split(.$subs)

predictions <- map2(models, split_data, predict)

The parallelized version of this is:
models <- df %>%

group_by(subs) %>%
split(.$subs) %>%
future_map(possibly(~gam(formula= y~s(x), data=.x, method="REML", select=T),

otherwise = NA_real_))

split_data <- df %>%
group_by(subs) %>%
split(.$subs)

predictions <- future_map2(models, split_data, predict)
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http://www.modernstatisticswithr.com/progchapter.html
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