

Randomized block trials with spatial correlation

Workshop in Mixed Models Uppsala, June 13-14, 2013 Johannes Forkman, Field Research Unit, SLU

SLU

Reseeding and extra fertilization in spring barley

Treatment
A: No extra N
B: 30 kg extra N
C: 60 kg extra N
D: Reseeding, no extra N
E: Reseeding + 30 kg extra N
F: Reseeding + 60 kg extra N
G: Reseeding + 90 kg extra N

Example from Anders Ericsson, Swedish Rural Economy and Agricultural Societies, HS Konsult

Design

- Four replicates
- Altogether 28 plots in a single row
- Seven treatments (A-G)

Randomized complete block analysis

Yield = Treatment + Block + E

Fixed effects of Treatment

Random effects of **Block** and **E**

The errors (E) are normally distributed and **independent**

Systematic error

- The plots differ, so
- If we subjectively decide to investigate A on some plots and B on some other plots, then
- · We do not compare the treatments on equal terms, and
- There will be a systematic error in the comparison of A and B.

SLU

Randomization is important!

- Randomization justifies the assumption of independent errors
- Randomization is strongly recommended
- Nevertheless, it is possible to take spatial correlation into account

Model with spatial correlation

Yield = Treatment + Block + E

Fixed effects of Treatment

Random effects of Block and E

Errors (E) are normally distributed and correlated

Distance

SLU

How to choose correlation function? ATC should be as small as possible!

The Akaike information criterion

$$AIC = -2L + 2p$$

- p is the total number of parameters^{*}) in the model
- In SAS, p is the total number of variances and covariances *) In R, p is the total number of fixed parameters, variances and covariances

SLU

Analysis using SAS

```
proc mixed data = HC0811 ;
   class Block Treatment ;
   model Yield = Treatment / ddfm = kr ;
   random Block ;
   repeated / type = sp(sph)(Plot) subject = intercept ;
   Ismeans Treatment / pdiff adjust = Tukey adjdfe = row ;
run;
```

Correlation in two dimensions: sp(sph)(x y)

Other structures: sp(exp), sp(gau)

Analysis using R

Correlation in two dimensions: corSpher(form = ~x + y)

Other structures: corExp, corGaus

Analysis with spatial correlation

Trial HC0811

	Degrees o	f freedom			
	Num.	Den.	F	Р	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
Treatment	6	20,8	2,91	0,032	

Analysis using the mixed procedure, SAS (Kenward and Roger's method)

Spherical correlation

The block variance was estimated to 0

SLU

Both trials Model without spatial correlation

Yield = Trial + Treatment + Trial×Treatment + Block(Trial) + E

Fixed effects of Trial, Treatment and Trial×Treatment

Random effects of Block(Trial) and E

Errors (E) are normally distributed and independent

SLU

Analysis without spatial correlation

	Degrees o	f freedom		
	Num.	Den.	F	Р
Trial	1	40	22,65	<,0001
Treatment	6	40	2,37	0,0474
Trial×Treat.	6	40	0,64	0,6999

The block variance was estimated to 0

Model without spatial correlation

Both trials

Treatment	Mean	Tukey
A: No extra N	1479	а
B: 30 kg extra N	1882	а
C: 60 kg extra N	1559	а
D: Reseeding, no extra N	1726	а
E: Reseeding + 30 kg extra N	1871	а
F: Reseeding + 60 kg extra N	2134	а
G: Reseeding + 90 kg extra N	2361	а

Different letters indicate significant differences at level 0.05.

Model with spatial correlation

Yield = Trial + Treatment + Trial×Treatment + Block(Trial) + E

Fixed effects of Trial, Treatment and Trial×Treatment

Random effects of Block(Trial) and E

Errors (E) are normally distributed and correlated

SLU

Bertil Matér

Matérn correlation

- Named after Bertil Matérn, professor in mathematical statistics applied to forest sciences, SLU, 1977-1981
- Has a smoothness parameter, *v*, which determines the shape.
 - v = 1/2 gives the exponential structure
 - $v \rightarrow \infty$ gives the gaussian structure
- · Available in SAS proc mixed

Model with spatial correlation

	Degrees o	f freedom		
	Num.	Den.	F	Р
Trial	1	4.6	5.60	0.069
Treatment	6	18	137.29	< 0.001
Trial×Treat	6	18	0.96	0.481

Analysis using the mixed procedure, SAS (Kenward and Roger's method)

Matérn correlation

The block variance was estimated to 0

SLU

Model with spatial correlation

Both trials

Treatment	Mean	Tukey
A: No extra N	1539	d
B: 30 kg extra N	1782	cd
C: 60 kg extra N	1851	bc
D: Reseeding, no extra N	1734	cd
E: Reseeding + 30 kg extra N	2131	ab
F: Reseeding + 60 kg extra N	2266	а
G: Reseeding + 90 kg extra N	2330	а

Different letters indicate significant differences at level 0.05.

Summary

- Randomization justifies the assumption of independent errors.
- · In mixed models, errors need not be independent
- Spatial analysis can improve precision

Strategy for spatial analysis

