
 
 

 

Generalized Linear Models 
Ulf Olsson, Unit of Applied Statistics and Mathematics, SLU 

  

But ... I'm not using any 
model. I'm only doing a 
few t tests. 
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Model-based statistical methods 
 

Many statistical methods, like t tests, are model based:  

y = f(x) + e 
y Response variable 

x Covariates and factors 

f some function 

e Residuals (i.e. differences between the model and the data) 
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General linear 
models:
Anova, Regression
ANCOVA, etc

Mixed models:
Repeated measures
Change-over trials
Subsampling
Clustered data
...

Generalized 
linear models:
Logit/probit models
Poisson models
Gamma models

Generalized 
linear mixed 
models:
Mixed models for non
normal data.

Developed into... Developed into...

Merged into...
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General linear models 
If the function f is linear, we are dealing with General linear models 

y = β0 + β1x1 + β2x2 + …+βpxp +e 

or in matrix terms  

y = XB + e  

X is a design matrix that contains data for the model, similar to a data spreadsheet 

Assumptions: 

1. The residuals  e  are independent 

2. The residuals have constant variance 

3. The residuals (approximately) follow a normal distribution 
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It is possible to 
• Estimate the parameters β0 …βp and 𝜎𝑒2 (the residual variance) of the model. (ML, LS) 

• Test if parameters are significantly different from zero 

• Assess the fit of the model 

• Make predictions based on the model 
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Tests of type 1, 2, 3 and 4 
 

The order in which factors are added to a model may affect the significance of the factor. 

Example 

y = yield of a crop 

x1 = soil humidity 

x2 = rain during the growing season 

Possible result: x1 has a significant effect on yield 

After x1 is in the model, x2 has no significant effect 

 

Does that mean that amount of rain has no significant effect on yield?  
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Tests of type 1, 2, 3 and 4 (cont.) 
 

Type I   SS(A), SS(B|A) and SS(AB|A;B).  (Sequential tests) 

Type II   SS(A|B); SS(B|A) and SS(AB|A;B).  "As if the factor was added last". 

Type III   Computes SS "as if the experiment had been balanced". 

Type IV   As Type III but different handling of empty cells 
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Examples of General Linear Models 
Simple regression   y = β0 + β1x + e  

Multiple regression  y = β0 + β1x1 + β2x2 + …+βpxp +e 

t test     y = β0 + β1x + e  

      where x=1 for one group, x=0 for the other group 

      “dummy variable” 

Analysis of Variance  y = β0 + β1x1 + β2x2 + …+βpxp +e 

      Where x1, x2, …, xp are dummy variables 
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Example 1: A t test is a regression model! 
Number of gill movements per minute was recorded for water louse (Asellus) in either stagnant 
water or in oxygen-rich water.  Data were organized as follows: 
Site Movements Dummy 
Stagnant 44 0 
Stagnant 53 0 
Stagnant 54 0 
Stagnant 43 0 
Stagnant 48 0 
Stagnant 49 0 
Stagnant 53 0 
Oxygen-rich 42 1 
Oxygen-rich 48 1 
Oxygen-rich 46 1 
Oxygen-rich 43 1 
Oxygen-rich 49 1 
Oxygen-rich 42 1 
Oxygen-rich 41 1 
Oxygen-rich 40 1 
Oxygen-rich 44 1 
Oxygen-rich 48 1 

 

Two analyses are given on the next page  
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Two-sample T for Movements 
 
Site          N   Mean  StDev  SE Mean 
Oxygen-rich  10  44,30   3,23      1,0 
Stagnant      7  49,14   4,45      1,7 
 
T-Test of difference = 0 (vs not =): T-Value = -2,61   
P-Value = 0,020  DF = 15 
 
Regression Analysis: Movements versus Dummy  
The regression equation is 
Movements = 49,1 - 4,84 Dummy 
 
Predictor    Coef  SE Coef      T      P 
Constant   49,143    1,424  34,51  0,000 
Dummy      -4,843    1,857  -2,61  0,020 
 
S = 3,76791   R-Sq = 31,2%   R-Sq(adj) = 26,6% 
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The dummy variable idea can be used when there are more than two groups (Analysis of 
Variance). This is done automatically in computer programs.  

 

Variables in GLM models 
1. Numeric variables (covariates) 

2. Non-numeric (“class”) variables (factors) 

(Translated to dummy variables by the program) 

 

Term: Linear predictor 

y = β0 + β1x1 + β2x2 + …+βpxp 
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Generalized linear models, GLIM 
GLIM is a class of statistical models that are based on the following building blocks: 

1. The response variable is assumed to follow some distribution in the exponential family 

2. The mean value μ of y is assumed to be related to covariates and factors through 

g(μ)   =   β0 + β1x1 + β2x2 + …+βpxp 

 

 

The link function g(μ) is often chosen as the canonical link for the chosen distribution 

To analyze data, you have to specify 

1. The distribution 

2. The link function 

3. The linear predictor (“model”). 

Link function Linear predictor 

12 
 



 
 

 

Examples of distributions and their canonical links 
 

Distribution Canonical link Use: type of data 

Normal Identity Continuous, Normal 

Binomial 𝑙𝑜𝑔𝑖𝑡(𝑝) = log (
𝑝

1 − 𝑝
) Proportion 

Poisson log:    log(μ) Count 

Gamma Inverse: − 1
𝜇

 Time duration, “lifetime” 

Multinomial (Cumulative logit)1 Ordinal data 
 
1: Not the canonical link but a link e.g. Glimmix can handle for multinomial data 
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Example 2: Models for binary data 
 (Bliss, 1934) 

Carbon disulphide, in different concentrations, was applied on groups of beetles.  

Response: y = number of dead beetles in a group of n.  
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DATA beetles; 
INPUT x n y; 
p=y/n; 
CARDS; 
1.6907 59 6 
1.7242 60 13 
1.7552 62 18 
1.7842 56 28 
1.8113 63 52 
1.8369 59 53 
1.8610 62 61 
1.8839 60 60 
; 
Note: x=log(dose) is often used in dose-response models.  

A logistic model for this type of data can be written 

logit(p) = log(p/(1-p)) = β0 + β1x 
This model can be fitted in SAS: 

15 
 



 
 

 

PROC GLIMMIX data=beetles plots=PearsonPanel; 
MODEL y/n=x 

 /dist=bin link=logit; 
RUN; 

Parts of the output: 
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Fit Statistics 
-2 Log Likelihood 37.43 
AIC  (smaller is 
better) 

41.43 

AICC (smaller is 
better) 

43.83 

BIC  (smaller is 
better) 

41.59 

CAIC (smaller is 
better) 

43.59 

HQIC (smaller is 
better) 

40.36 

Pearson Chi-
Square 

10.03 

Pearson Chi-
Square / DF 

1.67 

Deviance/df should be “close to 1”. Is 1.67 “too large”? 

Χ2 = 10.03 on 6 d.f., p = 0.12 
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Type III Tests of Fixed Effects 

Effect 
Num 

DF Den DF F Value Pr > F 

x 1 6 138.49 <.0001 
 

 

 

Parameter Estimates 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept -60.7175 5.1807 6 -11.72 <.0001 

x 34.2703 2.9121 6 11.77 <.0001 
 

The fitted model is     log(p/(1-p)))=-60.71 + 34.27x 
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LD50 
 

If p (the probability of being killed) is 0.5 then 

log(p/(1-p))=0 

 b0 + b1x = 0 

x = - b0/b1 

For our example data,  

b0 = -60.7175 (“intercept” in the printout) 

b1 = 34.2703 (“x” in the printout) so 

LD50 = - (-60.7175/34.2703) =1.77 

Notation: b0 denotes the sample estimate of β0  

b1 denotes the sample estimate of β1 
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p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89
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logit

-3

-2

-1

0

1

2

3

4

5

x

1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89
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Example 3: Binomial “Anova-like” model  
Do blood stains on egg shells depend on hen hybrid and/or on diet? 

Data: 18 cages with about 100 hens in each: 3 diets x 2 hybrids x 3 replicates  

10 eggs randomly selected from each cage.  y=blood stains/no blood stains 
 

Cage hybrid food FREQ nblood 
1 LB fiber 10 5 
2 LSL pellets 10 0 
3 LB Control 10 3 
4 LSL fiber 10 1 
5 LB pellets 10 5 
6 LSL Control 10 0 
7 LB fiber 10 4 
8 LSL pellets 10 1 
9 LB Control 10 5 

10 LSL fiber 10 0 
11 LB pellets 10 3 
12 LSL Control 10 1 
13 LB fiber 10 3 
14 LSL Control 10 1 
15 LB pellets 10 1 
16 LSL fiber 10 0 
17 LB Control 10 5 
18 LSL pellets 10 1 
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SAS program 

PROC GLIMMIX data=blood ; 

CLASS hybrid food; 

MODEL nblood/freq = hybrid food hybrid*food/ 

 DIST=bin LINK=logit ; 

LSMEANS hybrid/pdiff ilink; 

RUN;  
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Output: 
 

Fit Statistics 
-2 Log Likelihood 44.96 
AIC  (smaller is 
better) 

56.96 

AICC (smaller is 
better) 

64.60 

BIC  (smaller is 
better) 

62.30 

CAIC (smaller is 
better) 

68.30 

HQIC (smaller is 
better) 

57.70 

Pearson Chi-
Square 

9.94 

Pearson Chi-
Square / DF 

0.55 
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Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

hybrid 1 12 19.99 0.0008 

food 2 12 0.23 0.7948 

hybrid* 
food 

2 12 0.38 0.6945 

 

 
 

hybrid Least Squares Means 

hybrid Estimate 
Standard 

Error DF t Value Pr > |t| Mean 

Standard 
Error 

Mean 
LB -0.5070 0.2194 12 -2.31 0.0394 0.3759 0.05148 
LSL -2.8818 0.4837 12 -5.96 <.0001 0.05306 0.02430 
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Differences of hybrid Least Squares Means 

hybrid _hybrid Estimate 
Standard 

Error DF t Value Pr > |t| 
LB LSL 2.3748 0.5312 12 4.47 0.0008 
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Odds ratios 
Odds are defined as 

𝑂𝑑𝑑𝑠 =
𝑝

1 − 𝑝
 

Example: 20 out of 100 in group 1 are cured after treatment: 

𝑂𝑑𝑑𝑠1 =
0.20
0.80

= 0.25 

...and 10 out of 100 in group 2 

𝑂𝑑𝑑𝑠2 =
0.10
0.90

≈ 0.111 

To compare the two groups the odds ratio (OR) is often used: 

𝑂𝑅 =
𝑂𝑑𝑑𝑠1
𝑂𝑑𝑑𝑠2

=
0.25

0.111
≈ 2.52 
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The Odds of being cured are 2.52 times higher in group 1. 

A logistic regression model is 

log �
𝑝

1 − 𝑝
� = 𝛽0 + 𝛽1𝑥 

If x = 0 then 

log �
𝑝

1 − 𝑝
� = 𝛽0 

If x = 1, then 

log �
𝑝

1 − 𝑝
� = 𝛽0 + 𝛽1 
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To compare a group with x = 0 with a group with x = 1, the Odds ratio is. 

𝑂𝑅 =

𝑝1
1 − 𝑝1
𝑝2

1 − 𝑝2
=
𝑒𝛽0+𝛽1
𝑒𝛽0

= 𝑒𝛽1  

Thus, the regression parameter, when exponentiated, can be interpreted as an odds ratio. 
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Example 4: Poisson model (“Poisson regression”) 
The Poisson distribution is often used to model “count data” 

Number of wireworms/plot in a Latin Square experiment with 5 treatments 
(Snedecor and Cochran,1960) 

 
Row 

Column 
1 2 3 4 5 

1 P 3 O 2 N 5 K 1 M 4 
2 M 6 K 0 O 6 N 4 P 4 
3 0 4 M 9 K 1 P 6 N 5 
4 N 17 P 8 M 8 O 9 K 0 
5 K 4 N 4 P 2 M 4 O 8 

(K M N O P are treatments, the numbers are number of wireworms) 
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SAS program 
 

PROC GLIMMIX data=Poisson PLOTS=PearsonPanel; 
CLASS row col treat ; 
MODEL count = row col treat/ 
DIST=poisson LINK=log ; 
LSMEANS treat/adjust=Tukey ilink; 
RUN; 
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Output 
Fit Statistics 

-2 Log Likelihood 97.12 

AIC  (smaller is better) 123.12 

AICC (smaller is better) 156.21 

BIC  (smaller is better) 138.97 

CAIC (smaller is better) 151.97 

HQIC (smaller is better) 127.52 

Pearson Chi-Square 18.01 

Pearson Chi-Square / DF 1.50 

 

(p=0.12) 
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Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

row 4 12 3.63 0.0367 

col 4 12 0.74 0.5847 

treat 4 12 4.06 0.0263 
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Differences of treat Least Squares Means 
Adjustment for Multiple Comparisons: Tukey-Kramer 

treat _treat Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 

K M -1.6707 0.4504 12 -3.71 0.0030 0.0204 

K N -1.7121 0.4445 12 -3.85 0.0023 0.0160 

K O -1.5801 0.4523 12 -3.49 0.0044 0.0296 

…and so on  
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Some model fitting issues 
Models may be assessed using: 

Deviance For most models, Deviance/d.f. should be close to 1 

   (or at least non-significant, interpreted as Chi-square) 

Over-dispersion: When Deviance/df is “large”. Makes p-values “too small”. 

   The deviance can be used to compare models (χ2  tests), but 

AIC   (Akaike Information Criterion) is better for that purpose 

Residuals  (Pearson residuals) residuals should be approximately Normal; see 
example on next page 

R-square In general: not available. Some types of GLIM models have “Pseudo R2” 

Stepwise For example, stepwise logistic regression 
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Example of residual plot (Poisson regression data) 
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Wald, LR and Score tests 
Programs for GLIM may use different methods for test construction: 

Wald tests    𝑧 = 𝛽�

𝑠.𝑒.�𝛽��
 (or χ2=z2) 

Likelihood ratio test  Based on difference in the log likelihood function. 

      Χ2 approximation or F approximation 

Score tests    Based on the slope of the log likelihood at Ho 

 

All these tests are Large-sample tests 

The variety may cause confusion: Why are different p values given in different parts 
of the output?  

37 
 



 

  ββ̂

( )βL

1L
0L

0

38 
 



 

Over-dispersion     (More in a separate lecture) 
May be present when deviance/df is “large”. 

(But: wrong choice of model may also affect the deviance) 

Symptom: The variance in the data is larger than expected, for the chosen 
distribution 

Example: In a Poisson distribution, the mean value is μ and the variance is also μ. If 
the observed variance is larger than the mean, we may have over-dispersion 

Causes: Often some form of clustering in the data.  

Remedies:  

1. Choose some other distribution 

2.  Force Deviance/df to be exactly 1 

3. Use robust (“sandwich”) estimators 
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Ordinal data 
Ordinal data: e.g. school marks, assessment of symptom severity on a scale 1 2 3 4 5 

One approach: 
Assume that the data were generated from an unknown distribution as 

  

y=1 if η < τ₁ 

y=2 if τ₁ ≤η <τ₂ 

⋮   

y=s if τs-1 ≤ η 

τ1, τ2 … are called thresholds 
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 y=1 y=2 y=31τ 2τ
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Another approach  (“proportional odds model”) 
Make one logistic regression for each threshold.  

Illustrated for a simple regression model with three ordered categories 1 2 3: 

logit(P(y ≤ 1) = α1 + βx 

logit(P(y ≤ 2) = α2 + βx 

 

Assume that the intercepts are different but the slopes equal 

 

It turns out that these two approaches are mathematically identical.  
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Example 6:  Ordinal regression 
     

Treatment for arthritis pain.  Response:  

2 = “Marked improvement” 

1 = “Some improvement” 

0 = “No improvement” 

Data: 

Gender Treatment Marked Some None 
Female Active 16 5 6 
Female Placebo 6 7 19 
Male Active 5 2 7 
Male Placebo 1 0 10 
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SAS program: 

PROC GLIMMIX data=a; 
CLASS gender treatment; 
MODEL y = gender treatment gender*treatment 
 /dist=mult link=cumlogit; 
 FREQ f; 
RUN; 
Output: 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Gender 1 79 5.23 0.0248 

Treatment 1 79 9.76 0.0025 

Gender* 
Treatment 

1 79 0.29 0.5945 
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Mixed models 
Are used when we make several measurements on the same 

Experimental unit 

  

 

Examples: 
 Subsampling 

 Clustered data 

 Repeated measurements  

The smallest unit that gets an  

individual treatment 

 

⃝ ⃝ ⃝ 

⃝ ⃝ ⃝ 

⃝ ⃝ ⃝ 
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Example 7: A Mixed Generalized Linear Model 
Purpose:  investigate whether different treatments have different 
attraction on ladybirds and whether this changes with time.  

3  treatments 

3 replicates of each treatment  

6 time points (5, 6, 9, 13, 16 and 21 days). Response y: Number of ladybirds  

PROC GLIMMIX data=ladybird ; 
CLASS parcell komb day ; 
MODEL y = komb day komb*day /dist=Poisson link=log ; 
RANDOM residual / type=sp(pow)(day) subject=parcell*komb ; 
lsmeans komb /pdiff; 
RUN; 

 

Output: 
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Fit Statistics 

-2 Res Log Pseudo-
Likelihood 

475.72 

Generalized Chi-Square 190.69 

Gener. Chi-Square / DF 1.10 
 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Komb 2 29 10.91 0.0003 

day 5 145 4.45 0.0008 

Komb* 
day 

10 145 0.50 0.8853 

(“komb” is the treatment)  
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Model building 
• Include all relevant main effects (even non-significant ones) 

• If the A*B interaction is in the model, it should also include A and B 

• In polynomial models, include ALL terms lower than the chosen degree 

• Use tools such as Akaike Information Criterion (AIC) to choose between models 
(Do not care too much about p values when building models!) 

 

Deviance/df is affected 

 By the choice of distribution and link 

 By the linear model used 

So “overdispersion” may be caused by using a bad MODEL!  
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”All models are wrong… 

 

 
 

…but some are useful.” (G. E. P. Box)  
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R scripts 
Example 2 

ex2 <- glm(cbind(y,n-y)~x, data=beetles, 
family=binomial(link=”logit”)) 

summary(ex2) 

Example 3 

ex3 <- glm(cbind(nblood,freq-nblood)~hybrid*food, data=blood, 
family=binomial(link=”logit”)) 

summary(ex3) 
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Example 4 

ex4 <- glm(count~method, data=o, family=poisson(link=”log”)) 

summary(ex4) 

Example 5 

library(MASS) 

ex5 <- glm.nb(count~method, data=o) 

summary(ex5) 

Example 6 

library(VGAM) 

ex6 <- vglm(cbind(Marked,Some,None)~Gender*Treatment, data=a, 
family=propodds) 

summary(ex6) 
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Example 7 

ex7 <- glmmPQL(y~komb*day, random=~1|komb/parcell, 
correlation=corCAR1(form=~day|komb/parcell), data=ladybird, 
family=poisson(link=”log”)) 

summary(ex7) 
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