

Overdispersion

Workshop in generalized linear models Uppsala, June 11-12, 2014

Johannes Forkman, Field Research Unit, SLU

Outline

What is overdispersion and how do we detect it?

An overview of methods for overdispersed data

- Generalized linear mixed models
- Generalized estimating equations
- · Adjustment using an overdispersion factor
- Negative binomial distribution
- Mixture distributions for zero-inflated data

SLU

Overdispersion

In Poisson and binomially distributed data, the variance is a known function of the mean:

Proportions: $V(y_i) = \mu_i (1 - \mu_i)/n_i$

Counts: $V(y_i) = \mu_i$

In practice, the variance is often much larger. This is called *overdispersion*.

"Overdispersion is not uncommon in practice. In fact, some would maintain that overdispersion is the norm in practice and nominal dispersion the exception"

McCullagh and Nelder (1989)

Measures of goodness of fit

Deviance (*D***)**: Twice the difference between the log likelihood of a model with a perfect fit and the log likelihood of the fitted model

Pearson's chi-sqare:

$$\sum_{i=1}^{N} \frac{(y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)}$$

that is, the sum of all squared Pearson residuals

How to detect overdispersion

No overdispersion	Overdispersion
Deviance \approx df	Deviance \gg df
Pearson $\chi^2 \approx$ df	Pearson $\chi^2 \gg$ df

df = residual degrees of freedom

SLU

Example Leaves

20 plants

2 treatments: Active (10 plants) Control (10 plants)

Approx. 20 leaves per plant

SLU

Plant	Treatment	Infested	N	F	Plant	Treatment	Infested	N
1	Active	6	20	1	11	Control	5	20
2	Active	3	20	1	12	Control	9	19
3	Active	7	20	1	13	Control	14	20
4	Active	1	20	1	14	Control	3	20
5	Active	0	18	1	15	Control	20	20
6	Active	0	20	1	16	Control	8	20
7	Active	4	18	1	17	Control	7	15
8	Active	9	20	1	18	Control	7	20
9	Active	10	20	1	19	Control	8	20
10	Active	2	20	2	20	Control	5	20

The data was analyzed using a generalized linear model with a **binomial distribution** and a logit link.

The probability that a leaf was infested was estimated to 0.21 and 0.44, for Active and Control, respectively. This difference was significant (**P** < **0.0001**).

SLU

analysis The data was analyzed using a gene linear model with a **binomial distrib** incorrect a logit link.

The probability that a leaf was infested was estimated to 0.21 and 0.44, for Active and Control, respectively. This difference was significant (**P** < **0.0001**).

This

was

SLU

Why incorrect? Well, because...

Residual degrees of freedom: 18

Deviance: 94.53 (P < 0.0001) Pearson chi-square: 79.57 (P < 0.0001)

The observations are clearly overdispersed!

How could the data be overdispersed?

Each binomial observation is a cluster of approx. 20 Bernoulli (Yes/No) observations.

Bernoulli observations from the same plant might be correlated.

This correlation is the source of overdispersion

Image: A start of the star	Generalized Linear Mixed Models (GLMM)						
SLU GLMM		SLU					
We have fitted the model		In SAS,	the glimm	ix procedu	ure gives		
		Type III Test	s of Fixed Effe	ects			
$logit(\mu) = \beta_0 + \beta_i$	$\iota = 1, 2$	Effect	Num DF	Den DF	F Value	Pr > F	
But since the data is overdispersed and a generalized linear mixed model (GLMM	clustered, 1):	Ireatment	l almor fun	14.35	5.60	0.0325	

$$logit(\mu) = \beta_0 + \beta_i + b_{ij} \qquad i = 1,2$$

$$j = 1, 2, ..., 10$$

$$b_i \sim N(0, \sigma_b^2)$$

is more appropriate

In R, the glmer function can be used, and the likelihood ratio test is

	Df	AIC	deviance	Chisq	Chi DF	Pr(>Chisq)
Model.Null	2	65.864	61.864			
Model.Mixed	3	62.157	56.157	5.7071	1	0.0169*

Are there no problems?

- · Complicated GLMM models are hard to fit
- For GLMM, statistical inference is an issue
- We might be interested in the effects on the population, rather than in the effects on the individual subjects

Generalized Estimating Equations (GEE)

SLU

GEE – What's specified?

- Link function : e.g. log or logit
- The variance function: $\phi V(\mu)$, where ϕ is a dispersion factor
- Correlation pattern: e.g. exchangeable (i.e. compound symmetry), autoregressive, unstructured

GEE – What's not specified?

- The exact distribution (i.e. the exact likelihood)
- Random effects

This enables

- Simple estimating equations (makes it easier to fit the model)
- ✓ A robust estimator of the standard errors: the so called empirical sandwich estimator
- ✓ Population-averaged statistical inference

SLU

In SAS, using the genmod procedure:

Wald: P = 0.017 Score: P = 0.032

In R, using the ggegIm function:

Wald: P = 0.017

SLU

Example Seeding mixes

Four blocks

Four seeding mixes

Observed number of plants of a specific species

SLU

Residual degrees of freedom: 9

Deviance: 90.23 (P < 0.0001) Pearson's chi-square: 79.55 (P < 0.0001)

The data is clearly overdispersed.

In this example, we have no clusters!

SLU Adjustment using overdispersion factor Within the glm function, specify Simply assume that the variance is $\phi V(\mu)$, where ϕ is a dispersion factor family = quasipoisson or family = quasibinomial Response Variance Proportions $\phi\mu(1-\mu)/n$ Counts Øμ Within the model statement of the genmod procedure, give the option Estimate ϕ as Pearson's chi-square / df: dist = poisson pscale or $\hat{\phi} = 79.55/9 = 8.84$ dist = binomial pscale

SLU

Analysis of deviance

Without overdispersion factor:

 $\chi^2 = D(Reduced) - D(Complete)$

With overdispersion factor:

 $F = \frac{D(Reduced) - D(Complete)}{[df(Complete) - df(Reduced)]\hat{\phi}}$

SLU

Results without dispersion factor

LR Statistics For Type 3 Analysis								
Source	DF	Chi-Square	Pr > ChiSq					
Block	3	4.98	0.1735					
Mix	3	30.95	<.0001					

Means on the log scale

Back-transformed means

Mix	Mean	SEM	95%	conf.	Mean	95%	conf.
1	2.57	0.138	2.3	2.8	13.1	10.0	17.2
2	2.32	0.157	2.0	2.6	10.1	7.5	13.8
3	3.06	0.108	2.8	3.3	21.2	17.2	26.3
4	2.04	0.180	1.7	2.4	7.7	5.4	10.9

Results with dispersion factor

LR Statistics For Type 3 Analysis							
Source	Num DF	Den DF	F Value	Pr > F			
Block	3	9	0.19	0.9021			
Mix	3	9	1.17	0.3749			

Means on the log scale

Back-transformed means

Mix	Mean	SEM	95% c	conf.	Mean	95%	conf.
1	2.57	0.410	1.77	3.38	13.1	5.9	29.2
2	2.32	0.465	1.40	3.23	10.1	4.1	25.2
3	3.06	0.322	2.43	3.69	21.2	11.3	40.0
4	2.04	0.535	0.99	3.08	7.7	2.7	21.9

SEM are $\sqrt{\hat{\phi}} = 2.97$ times larger than before

The negative binomial distribution

Example Sheep milk

Somatic cell count in sheep milk using mechanical or manual milking

Method	Count	Method	Count
Mechanical	2966	Manual	186
Mechanical	569	Manual	107
Mechanical	59	Manual	65
Mechanical	1887	Manual	126
Mechanical	3452	Manual	123
Mechanical	189	Manual	164
Mechanical	93	Manual	408
Mechanical	618	Manual	324
Mechanical	130	Manual	548
Mechanical	2493	Manual	139

SLU

SLU

Pearson residuals

Poisson distribution

Residual degrees of freedom: 18

Deviance: 14203 (P < 0.0001) Pearson chi-square: 13643 (P < 0.0001) The observations are clearly overdispersed.

Using the previous method, standard errors would be multiplied by $\sqrt{\hat{\phi}} = \sqrt{13643/18} = 27.5$

SLU

The negative binomial distribution

SLU

SLU

Negative binomial distribution

glm.nb in R, and genmod in SAS

Residual degrees of freedom: 18

Deviance: 22.77 (P = 0.200) Pearson chi-square: 16.27 (P = 0.574) The data is not overdispersed

Problem solved!

SAS

Differences of Method Least Squares Means							
Method	_Method	Estimate	Standard Error	z Value	Pr > z		
Manual	Mechanical	-1.7384	0.4256	-4.08	<.0001		

R

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	5.389	0.301	17.89	< 2e-16 **
MethodMechanica	al 1.738	0.426	4.08	4.4e-05 **

Zero-inflated data

0 0 0 0 0 4 0 0 16 0 0 5 0 0 0 10 0 0 0 12 0 0 0 0

Zero-inflated data

- There are more zeros than expected according to the Poisson or negative binomial distribution
- A special case of overdispersion
- Common in ecology when the numbers of various species are counted

SLU

A negative binomial distribution

SLU

Zero-inflated Poisson distribution

A mixture of a Poisson distribution and a binomial distribution

 $\Pr(\text{Extra zero}) = \pi$

Pr(Observation zero)

 $= \pi + (1 - \pi) \Pr(\text{Poisson distribution gives a zero})$

How to fit zero-inflated models

Zero-inflated Poisson and zero-inflated negative binomial models can be fitted

 using the zeroinfl function of the pscl package

 using the genmod procedure, through dist = zip and dist = zinb, respectively

See Exercise 5

Summary

Overdispersion is the rule rather than the exception. When not accounted for, the statistical inference is not valid.

The following methods were presented:

- Generalized linear mixed models
- Generalized estimating equations
- Adjustment using an overdispersion factor
- Negative binomial distribution
- Mixture distributions for zero-inflated data