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”Overdispersion is not uncommon in practice. In 

fact, some would maintain that overdispersion is 

the norm in practice and nominal dispersion the 

exception”

McCullagh and Nelder (1989)

Outline

What is overdispersion and how do we detect it?

An overview of methods for overdispersed data

• Generalized linear mixed models

• Generalized estimating equations

• Adjustment using an overdispersion factor

• Negative binomial distribution

• Mixture distributions for zero-inflated data

Overdispersion

In Poisson and binomially distributed data, the 

variance is a known function of the mean:

Proportions: � �� = �� 1 − �� /	�

Counts: � �� = ��

In practice, the variance is often much larger. This is 

called overdispersion.



Measures of goodness of fit

Deviance (
): Twice the difference between

the log likelihood of a model with a perfect fit 

and the log likelihood of the fitted model

Pearson’s chi-sqare:
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� �

�(�
�)
�

���

that is, the sum of all squared Pearson residuals

How to detect overdispersion

No overdispersion

Deviance ≈ df

Pearson �� ≈ df

Overdispersion

Deviance ≫ df

Pearson �� ≫ df

df = residual degrees of freedom

Example Leaves

20 plants

2 treatments: Active  (10 plants)

Control (10 plants)

Approx. 20 leaves per plant

Plant Treatment Infested N Plant Treatment Infested N

1 Active 6 20 11 Control 5 20

2 Active 3 20 12 Control 9 19

3 Active 7 20 13 Control 14 20

4 Active 1 20 14 Control 3 20

5 Active 0 18 15 Control 20 20

6 Active 0 20 16 Control 8 20

7 Active 4 18 17 Control 7 15

8 Active 9 20 18 Control 7 20

9 Active 10 20 19 Control 8 20

10 Active 2 20 20 Control 5 20



The data was analyzed using a generalized 

linear model with a binomial distribution and 

a logit link.

The probability that a leaf was infested was 

estimated to 0.21 and 0.44, for Active and 

Control, respectively. This difference was 

significant (P < 0.0001).

The data was analyzed using a generalized

linear model with a binomial distribution and 

a logit link.

The probability that a leaf was infested was

estimated to 0.21 and 0.44, for Active and 

Control, respectively. This difference was

significant (P < 0.0001).

This

analysis

was

incorrect!

Residual degrees of freedom: 18

Deviance: 94.53 (P < 0.0001)

Pearson chi-square: 79.57 (P < 0.0001)

The observations are clearly overdispersed!

Why incorrect? Well, because…

Each binomial observation is a cluster of

approx. 20 Bernoulli (Yes/No) observations.

Bernoulli observations from the same plant might 

be correlated.

This correlation is the source of overdispersion

How could the data be overdispersed?



Treatment Infested N

Active 42 196

Control 86 194

Note that we get exactly the same results if

we analyze the following summary table:

These analyses do not consider variation 

between plants (i.e. correlation within plants).

Generalized Linear Mixed 

Models (GLMM)

We have fitted the model

logit � = �� + ��

But since the data is overdispersed and clustered,

a generalized linear mixed model (GLMM):

logit � = �� + �� + ���

�� 	~	" 0, %&�

is more appropriate

' = 1,2

' = 1,2
) = 1, 2, … , 10

GLMM

In SAS, the glimmix procedure gives

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Treatment 1 14.35 5.60 0.0325

In R, the glmer function can be used, and the 

likelihood ratio test is

Df AIC deviance Chisq Chi DF Pr(>Chisq)

Model.Null 2 65.864 61.864

Model.Mixed 3 62.157 56.157 5.7071 1 0.0169*



• Complicated GLMM models are hard to fit

• For GLMM, statistical inference is an issue

• We might be interested in the effects on the 

population, rather than in the effects on the 

individual subjects

Are there no problems?

Generalized Estimating 

Equations (GEE)

GEE – What’s specified?

• Link function : e.g. log or logit

• The variance function:  +� � , where + is a 
dispersion factor

• Correlation pattern: e.g.

exchangeable (i.e. compound symmetry),

autoregressive,

unstructured

GEE – What’s not specified?

• The exact distribution (i.e. the exact likelihood)

• Random effects

This enables

� Simple estimating equations (makes it easier to 

fit the model)

� A robust estimator of the standard errors: the so 

called empirical sandwich estimator

� Population-averaged statistical inference



In SAS, using the genmod procedure:

Wald: P = 0.017

Score: P = 0.032

In R, using the ggeglm function:

Wald: P = 0.017
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Source: http://stats.stackexchange.com/questions/32419/difference-between-generalized-linear-models-generalized-linear-mixed-models-i

Black: GEE

(population-

averaged)

Gray: GLMM

(subject-

specific)

GEE is a model for the population average

Adjustment using an 

overdispersion factor

Block Mix Count

1 1 24

1 2 12

1 3 8

1 4 13

2 1 9

2 2 9

2 3 9

2 4 18

3 1 12

3 2 8

3 3 44

3 4 0

4 1 8

4 2 12

4 3 25

4 4 0

Four blocks

Four seeding 

mixes

Observed 

number of plants 

of a specific 

species

Example
Seeding mixes Residual degrees of freedom: 9

Deviance: 90.23 (P < 0.0001)

Pearson’s chi-square: 79.55 (P < 0.0001)

The data is clearly overdispersed.

In this example, we have no clusters!



Estimate + as Pearson’s chi-square / df:

Response Variance

Proportions φµ(1 – µ)/n

Counts φµ

Simply assume that the variance is +� � , where 

+ is a dispersion factor

+, = 79.55/9 = 8.84	

Adjustment using overdispersion factor
Within the glm function, specify

family = quasipoisson

or
family = quasibinomial

Within the model statement of the 

genmod procedure, give the option

dist = poisson pscale

or
dist = binomial pscale

Analysis of deviance

Without overdispersion factor:

�� = 3 4567856 − 3 9:;<=5>5

With overdispersion factor:

? = 3 4567856 − 3(9:;<=5>5)
6@ 9:;<=5>5 − 6@(4567856) +,

Mix Mean SEM 95% conf. Mean 95% conf.
1 2.57 0.138 2.3 2.8 13.1 10.0 17.2

2 2.32 0.157 2.0 2.6 10.1 7.5 13.8

3 3.06 0.108 2.8 3.3 21.2 17.2 26.3

4 2.04 0.180 1.7 2.4 7.7 5.4 10.9

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

Block 3 4.98 0.1735

Mix 3 30.95 <.0001

Means on the log scale Back-transformed means

Results without dispersion factor



Mix Mean SEM 95% conf. Mean 95% conf.
1 2.57 0.410 1.77 3.38 13.1 5.9 29.2

2 2.32 0.465 1.40 3.23 10.1 4.1 25.2

3 3.06 0.322 2.43 3.69 21.2 11.3 40.0

4 2.04 0.535 0.99 3.08 7.7 2.7 21.9

Means on the log scale Back-transformed means

SEM are +, = 2.97	times larger than before

Results with dispersion factor

LR Statistics For Type 3 Analysis

Source Num DF Den DF F Value Pr > F

Block 3 9 0.19 0.9021

Mix 3 9 1.17 0.3749

The negative binomial 

distribution

Method Count Method Count

Mechanical 2966 Manual 186

Mechanical 569 Manual 107

Mechanical 59 Manual 65

Mechanical 1887 Manual 126

Mechanical 3452 Manual 123

Mechanical 189 Manual 164

Mechanical 93 Manual 408

Mechanical 618 Manual 324

Mechanical 130 Manual 548

Mechanical 2493 Manual 139

Somatic cell count in sheep milk using

mechanical or manual milking

Example Sheep milk
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Residual degrees of freedom: 18

Deviance: 14203 (P < 0.0001)

Pearson chi-square: 13643 (P < 0.0001)

The observations are clearly overdispersed.

Using the previous method, standard errors would

be multiplied by +, = 13643/18 = 27.5

Poisson distribution The negative binomial distribution
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glm.nb in R, and genmod in SAS

Residual degrees of freedom: 18

Deviance: 22.77 (P = 0.200)

Pearson chi-square: 16.27 (P = 0.574)

The data is not overdispersed

Problem solved!

Negative binomial distribution
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Differences of Method Least Squares Means

Method _Method Estimate Standard 

Error

z Value Pr > |z|

Manual Mechanical -1.7384 0.4256 -4.08 <.0001

Negative binomial distribution

Coefficients:

Estimate   Std. Error z value    Pr(>|z|)    

(Intercept)         5.389         0.301   17.89    < 2e-16 ***

MethodMechanical 1.738 0.426       4.08  4.4e-05 ***

SAS

R

Zero-inflated data

Zero-inflated data

� There are more zeros than expected

according to the Poisson or negative 

binomial distribution

� A special case of overdispersion

� Common in ecology when the numbers

of various species are counted

0  0  0  0  0  0  4  0  0 16  0  0  5  0  0  0  10  0  0  0  0 12  0  0  0  0
A negative binomial distribution

mean = 20, scale = 10
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Zero-inflated data

This is not a 

Poisson or a 

negative binomial 

distribution

But it might be a 

mixture of a 

Poisson and a 

binomial distribution

Or a mixture of a 

negative binomial 

and a binomial 

distribution

0 5 10 15

 

Zero-inflated Poisson distribution

Pr Extra	zero = J

Pr Observation	zero

= J + 1 − J 	Pr(Poisson	distribution	gives	a	zero)

∙

A mixture of a Poisson distribution and a binomial 

distribution

Zero-inflated Poisson and zero-inflated negative 

binomial models can be fitted

• using the zeroinfl function of the 

pscl package

• using the genmod procedure, 

through dist = zip and dist = zinb, 

respectively

See Exercise 5

How to fit zero-inflated models Summary

The following methods were presented:

• Generalized linear mixed models

• Generalized estimating equations

• Adjustment using an overdispersion factor

• Negative binomial distribution

• Mixture distributions for zero-inflated data

Overdispersion is the rule rather than the exception. 

When not accounted for, the statistical inference is 

not valid.


