

Received: 13 January 2023 Revised: 1 June 2023

Accepted: 22 June 2023

DOI: 10.1111/efp.12823

SHORT COMMUNICATION

The pine pathogen Diplodia sapinea is associated with the death of large Douglas fir trees

Elisabeth Ritzer 💿 🕴 Martin Schebeck 💿 🕴 Thomas Kirisits 💿

Pseudotsuga menziesii (Douglas fir)

- Native to North America
- One of the most important non-native tree species in European forestry
- Promising alternative to native conifers
- High growth rates
- Drought-resistant
- Less affected by pests and pathogens • (but this may change over time)

Thomas et al. (2022)

BOKU

Institute of Forest Entomology, Forest Pathology and Forest Protection | Elisabeth Ritzer

Diplodia sapinea (Syn. Sphaeropsis sapinea)

- Endophytic in symptomless healthy trees
- Isolated from many different broadleaf and conifer

SPECIES (Zlatkovic et al., 2017, Bußkamp et al., 2021)

- Becomes pathogenic in drought-stressed trees
- "Winner" of climate change (Blumenstein et al., 2021)
 - Spread to the North
 - Scots pine increasingly affected
 - Severe epidemics in many parts of Europe

© Landscape: Diplodia Blight | Center for Agriculture, Food, and the Environment at UMass Amherst

Diplodia sapinea (Syn. Sphaeropsis sapinea)

- Diverse symptoms on main hosts (*Pinus spp.*)
 - Shoot and crown dieback
 - Intensive resin flow •
 - Blue-staining of sapwood ۲
 - Death of trees •
 - Black pycnidia containing brown conidia ٠
- Differences in virulence among strains (Bußkamp et al., 2021)
- Host switch increases virulence

(Blumenstein et al., 2022)

BOKU

Background

- Previous observations in Austria (Steyrer et al., 2020)
- Observations of symptoms on large Douglas fir trees in Schönberg am Kamp in May 2022
- Unexpectedly no bark beetle infestation
- Two other Austrian sites in Eastern Austria:
 - Hafnerbach
 - Bad Sauerbrunn
- A total of 13 recently dead Douglas fir trees were examined
- What was the cause of the death of large Douglas fir?

[] воки

Institute of Forest Entomology, Forest Pathology and Forest Protection

Material and Methods – Fungal isolation

- Fungal isolation from blue-stained sapwood
- Cultivation on 2 % malt extract agar (MEA), incl. streptomycin sulfate
- Identification based on
 - Colony morphology
 - DNA sequencing of ITS region
 - Diplodia sapinea-specific primers

Results – Field observations and isolations

- Symptoms (in 7 out of 13 Douglas fir trees)
 - Trees (dbh 21-41cm) died in 2022 (reddish foliage)
 - Intensive resin flow on the bole ٠
 - Blue-staining of the sapwood ۲
- *Diplodia sapinea* isolated from seven trees at three sites
- Isolation frequency 93% (141 out of 152 sapwood slivers)
- Identity of isolates (one per tree) confirmed by sequencing of ITS region and species-specific primers
- Six other dead trees affected by root rot, but no resin flow or blue-stained sapwood

BOKU

Inoculation Experiment

- Greenhouse experiment: duration 54 days
- Two-year-old seedlings of *Pinus sylvestris* and *Pseudotsuga menziesii*
- Ten individuals/ isolate/ tree species
- Random wound-inoculation of each seedling with
 - One of the seven isolates
 - Or control (sterile MEA)
 - Ten seedlings/ tree species remained untreated
- Re-isolation from inoculated trees

Results – Greenhouse experiment

- All *D. sapinea* inoculated seedlings developed symptoms
 - Browning of needles
 - Shoot dieback •
 - Phloem necrosis and blue-staining of sapwood
 - Death ullet
- Minor necrosis in control plants treated with MEA ●
- No symptoms in untreated plants lacksquare
- Re-isolation rate of D. sapinea: 96% (Ps. menziesii), • 94% (*P. sylvestris*); not isolated from control plants

BOKU

Results – Symptoms

🚺 воки

Results – Survival of seedlings

- First symptoms two weeks after inoculation
- First dead seedlings in both species 22 days after inoculation
- Faster disease progression in Douglas fir
- Survival after 54 days:

воки

- Ps. menziesii 20 % survival
- *P. sylvestris* 81 % survival
- Significant differences in virulence among isolates

50%

0

100%

75%

survival probabilities

Results – Growth rate lesion length and blue-staining

- Higher growth rates of lesion length and blue-staining in Douglas fir \bullet
- Some isolates also showed higher growth rates \bullet
- Growth rate: length of necrosis/ blue-staining divided by day of measurement (mm/day) \bullet

Growth rate (GR) of proximal bark lesion length

BOKU

Institute of Forest Entomology, Forest Pathology and Forest Protection | Elisabeth Ritzer

Growth rate (GR) of blue-staining in the sapwood

Discussion

- Experimental evidence that *D. sapinea* kills large Douglas fir
 - Confirms previous observations (Steyrer et al., 2020)
- Novel serious threat to Douglas fir?
- High temperature and drought scenarios may increase severity
- Higher mortality on non-native host -> does host switch increase fungal virulence? (cf. Blumenstein et al. 2022)
- Higher risk in mixed stands with pines?
- Can *D. sapinea* occur as an endophyte in Douglas fir?

Federal Ministry Republic of Austria Agriculture, Forestry, Regions and Water Management

Thanks to all project partners, forest owners, and the team at the IFFF!

Elisabeth Ritzer

Department of Forest- and Soil Sciences Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF) Peter-Jordan-Straße 82/ I, 1190 Vienna, Austria Elisabeth.ritzer@boku.ac.at

