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Abstract: We developed a Bayesian probability model for mark–recapture data. Three alternative versions of the model
were applied to two sets of data on the abundance of migrating Atlantic salmon (Salmo salar) smolt populations, and
the results were then compared with those of two widely used maximum likelihood models (Petersen method and a
model using stratified data). Our model follows the basic principles of stochastic models presented for stratified data.
In contrast to the earlier models, our model can deal with sparse data. Moreover, even weak dependencies between the
studied parameters and the possible factors affecting them can be used to improve the plausibility of the estimates. The
assumptions behind our approach are more realistic than those of earlier models, taking into account such factors as
overdispersion, which is expected to be present in the mark–recapture data of salmon smolts because of their schooling
behavior. Our examples also show that assumptions about the model structure can have a substantial impact on the re-
sulting inferences on the size of the smolt run, especially in terms of the precision of the estimate.

Résumé : Nous avons mis au point un modèle de probabilité bayésien pour étudier des données de marquage et de
recapture. Trois versions différentes du modèle ont été appliquées à deux séries de données sur l’abondance de
populations de saumoneaux du saumon de l’Atlantique en migration et les résultats ont été comparés à ceux de deux
modèles courants de vraisemblance maximale, la méthode de Petersen et un modèle qui utilise des données stratifiées.
Contrairement à ces modèles plus anciens, le nôtre peut utiliser des données éparses. De plus, même des liens faibles
entre les paramètres étudiés et les facteurs qui les affectent peuvent servir à augmenter la plausibilité des estimations.
Les présuppositions sous-jacentes à notre méthodologie sont plus réalistes que celles des modèles précédents, car elles
tiennent compte de facteurs tels que la surdispersion que l’on s’attend à trouver dans les données de marquage-
recapture de saumoneaux à cause de leur comportement de nage en bancs. Nos exemples montrent aussi que les
présuppositions faites au sujet de la structure du modèle peuvent avoir un impact important sur la taille estimée de la
population migratrice de saumoneaux, particulièrement en ce qui a trait à la précision de l’estimation.
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Introduction

Mark–recapture methods are widely used in the assess-
ment of animal abundance (Otis et al. 1978; Seber 1982;
Schwarz and Seber 1999). The simplest version of mark–re-
capture models is the Petersen method (Seber 1982), which
assumes a closed population and equal recapture probabilities
of all animals during the experiment. The Petersen method is
an example of an easy method, but unfortunately it is also
too simplistic to be genuinely useful in real applications.
Methods with more realistic assumptions are required to an-
alyze complex mark–recapture data. Considerable progress
has already been made in developing models that are able to
deal with, for example, catchability varying over time
(Schwarz and Seber 1999). However, this development has
been largely carried out in the context of maximum likeli-
hood estimation. Bayesian mark–recapture models have also
been developed (Castledine 1981; Gazey and Staley 1986;

George and Robert 1992), but they too rely on the simplistic
assumptions of, for example, independently behaving indi-
viduals.

Typical mark–recapture studies on migratory fish species
like salmon aim to estimate abundance by partial trapping of
either young fish leaving the nursery grounds for the feeding
grounds or adult fish assembling in the spawning grounds
following the feeding migration. In many such studies, cap-
ture probabilities have been reported to vary over the trap-
ping period (Dempson and Stansbury 1991; Schwarz and
Dempson 1994; Thedinga et al. 1994). In addition, smolts of
Atlantic salmon (Salmo salar) have a tendency to school
during their downstream migration (Kalleberg 1958; Baksh-
tanskiy et al. 1988; Fängstam et al. 1993), similar to smolts
of Pacific salmon species (Burgner 1991; Heard 1991; Salo
1991). Social interaction between smolts has been suggested
as the reason behind the schooling behavior (Allen 1944;
Hansen and Jonsson 1985; Hvidsten et al. 1995). Schooling
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causes more variation in capture data (overdispersion) than
there would be if smolts moved independently. Hvidsten et
al. (1995) reported great overdispersion among daily smolt
catches in the River Orkla, Norway. To date, implications of
schooling behavior have not been taken into account in smolt
abundance analyses.

In this paper we present a Bayesian probability model that
can be used to derive the posterior probability distribution of
the population size from stratified mark–recapture data. We
combine the advantages of Bayesian modeling with the de-
tailed statistical model presented by Schwarz and Dempson
(1994). By considering the possibility of schooling behavior,
a step towards more realistic model assumptions is taken.
We also provide an option to incorporate into the model en-
vironmental covariates that might influence the values of
estimated parameters. We analyze two data sets from Atlan-
tic salmon smolt studies as examples: the Conne River data
from Canada, presented and analyzed by Schwarz and
Dempson (1994), and similar data from a much larger river
in Scandinavia, the River Tornionjoki. Although we apply
our model to the abundance estimation of Atlantic salmon,
the model could be adapted to apply to any other animal
species when using stratified mark–recapture data. The pres-
ence of dependent behavior in a form of, for example, spa-
tial aggregation is typical among a wide range of animal
species. Similarly, varying capture probability and its crucial
role in the estimation of abundance are well recognized in
the literature. Thus, our model has the potential to be ap-
plied to a wide range of biological problems.

Related study design

The model presented here is tailored to fit a common type
of study design in partial smolt trapping. The basic idea is to
provide continuous input of marked smolts upstream from
the trap. Monitoring the recaptures of marked smolts pro-
vides information on the catchability of smolts. By having
information on the catchability and knowing the number of
unmarked smolts caught, it is possible to make inferences
about the total number of smolts that passed the trapping site
during the trapping period. It is assumed that there is at least
one trapping device used continuously over the migration
period. If two devices are available, the upper trap is used
for marking and releasing with group-specific or individual
marks and the lower “main trap” is used to catch both
marked and unmarked smolts. If only one device is used,
smolts that are caught are regularly marked and transported
upstream and released for possible recapture. Here, the two-
trap study design is represented by the Conne River and the
one-trap design by the River Tornionjoki data. By assuming
that the transportation of marked smolts corresponds to the
use of a marking trap, the same model can be used in both
cases.

Data from a study design described above is naturally
temporally stratified. A proper unit of a stratum is 1 day,
which can be easily justified by the commonly observed di-
urnal periodicity in the migration activity among Atlantic
salmon smolts (Österdahl 1969; Hesthagen and Garnas 1986;
Fängstam et al. 1993).

The following types of data are collected using the design
described above. We release mi smolts marked by individual

or group-specific marks in day i. In each trapping day j, the
number of smolts (ri,j) recaptured in day j and released in
day i is recorded, as well as the number (cj) of unmarked
smolts captured. Daily measurements of environmental co-
variates such as water level (WLj) and water temperature
(WTj) can be recorded and used in the analysis. The notation
for data and model parameters is summarized in Table 1.

Statistical methods

In this section, we present three Bayesian models for smolt
trapping data. Because the Bayesian approach may be unfa-
miliar to some of the readers, we briefly explain the basic
concepts of Bayesian inference (e.g., O’Hagan 1994) as they
appear.

Models
We transfer two models from the frequentist framework to

the Bayesian framework by using the original type of model
structure, but completing the probability model by assigning
prior distributions for model parameters. First, we formulate
model MP , a Bayesian version of the traditional Petersen
model. The Petersen model is used here as a simple example
to illustrate the notation and basic concepts of Bayesian
modeling. The second model, MSD, is based on the mark–re-
capture model introduced by Schwarz and Dempson (1994).
However, the model is also improved by constructing a hier-
archical structure for the model parameters. Finally, to allow
for dependent behavior of smolts, we introduce model MS,
which accounts for overdispersion.

In each of the three models, it is assumed that (i) all
marked and unmarked smolts migrate downstream, (ii) there
is no mark loss between release and recapture sites, (iii) there
is no mortality between release and recapture sites, (iv) the
catchability of a marked smolt does not depend on the time
spent in the river after release, and (v) marked and unmarked
smolts have equal catchability and equal aggregation pat-
terns.

Model MP
In addition to assumptions i–v, the Petersen method is

based on the assumption that all smolts move independently
and are equally catchable throughout the whole trapping pe-
riod. Thus, the total number of unmarked smolts caught (C =

cii
M
=∑ 1 ) is binomially distributed given the size of the un-

marked population (U) and the catchability (q). By assumption
v, the total number of recaptured smolts (R = ri jj

M
i
M

,== ∑∑ 11 )

is also conditionally binomially distributed given the total
number of marked smolts released (T = mii

M
=∑ 1 ) and the

common catchability (q). Formally, the model specification is

(1) C�U, q ~ Bin(U, q)

R�T, q ~ Bin(T, q)

This model describes the stochastic relationship between the
data and the model parameters and also completely defines
the likelihood function of data.

The dependence structure of the model can be illustrated
in terms of a directed acyclic graph (DAG; Fig 1a). A DAG
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is a graphical presentation of a statistical model that facili-
tates the understanding of the model structure. In a DAG,
constants are denoted by rectangles and random variables by
ovals. Dependencies between quantities are expressed by ar-
rows: if parameter A follows a distribution with parameter
B, there is a solid arrow that points from B to A. If parame-
ter A is a function of parameter B, there is a broken arrow
pointing from B to A. Frames or “plates” around a set of pa-
rameters are used to represent repetitive parts of the model.
More detailed descriptions of DAGs in the context of fisher-
ies science are given by, for example, Meyer and Millar
(1999) and Wyatt (2002).

From a Bayesian point of view, the model specification is
not yet complete. The idea of Bayesian modeling is to con-
struct a full probability distribution for all quantities in the
model, including both data and parameters. Equation 1 al-
ready defines the conditional distributions of the data given
the parameters. A full probability model is completed by as-
signing prior probability distributions (priors) for the model
parameters, in this case, to the catchability (q) and the total
number of unmarked smolts (U). The prior should represent
the uncertainty, in the form of probability statements, about
the parameter values before obtaining any data. In this re-
gard, the Bayesian approach to inference is very different
from the frequentist one. In particular, the frequentist approach
does not allow us to make probability statements about param-
eter values. The prior distributions can be based on previous
measurements of the population size and catchability, physical

properties of the area occupied by the population, properties
of the sampling design, etc. Thus the prior distribution
should always depend on the context. With the notation U ~
D(), q ~ D(), we express that prior distributions are assigned
to these parameters.

Sometimes it may be justified to ignore even strong prior
information to see what the value of the data is alone. Ac-
cording to Raftery (1988), a vague prior distribution for the
population size in a binomial experiment would be propor-
tional to 1/U. A vague prior for the catchability is a uniform
distribution between 0 and 1.

Model MSD
Here we present a Bayesian version of the model intro-

duced by Schwarz and Dempson (1994). In addition to as-
sumptions i–v, Schwarz and Dempson (1994) assumed that
smolts move independently and that the catchability of smolts
remains constant within each day. However, they allowed the
catchability to vary between days. The basic idea of their
model to allow for variable catchability is to perform
Petersen estimations separately for each day. This requires
that the movement of each release group be modeled to as-
sess the probability of a marked smolt passing the trap in
day j. The distribution for the daily catches is then

(2) c u q u qj j j j j| , ( , )− Bin

r q m m qi j j i j i i j i j, , ,| , , ~ ( , )θ θBin
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Indices

M the number of recapture and release days
i the day of release i = 1,…,M
j the day of recapture j = i,…,M
Data (X)
mi the number of smolts with group-specific marks released in day i
ri,j the number of smolts with group-specific marks released in day i and recaptured in day j

WTj the water temperature in day j

WLj the water level or the discharge in day j

cj the number of unmarked smolts captured in day j

Parameters (�)
qj the catchability of smolts that pass the trapping site in day j

η j the mean of logit(catchability) in day j

ν0, ν1, ν2 the intercept and regression coefficients of environmental covariates of logit(catchability)
λ i the random effect mean of log(traveling time) of a smolt group released in day i
φi the random standard deviation of log(traveling time) of a smolt group released in day i
δi the mean of random effects mean of log(traveling time) of smolts groups released in day i
ψ 0, ψ1, ψ 2 the intercept and regression coefficients of environmental covariates of δi

π the standard deviation of random means of log(traveling time) of smolt groups
γi the mean of random standard deviations of log(traveling time) of smolt groups released in day i
ω0, ω1, ω2 the intercept and regression coefficients of environmental covariates of log(γi)
ρ the standard deviation of random standard deviations
U the size of the total smolt run
pj the probability that a smolt passes the trapping site in day j

uj the number of unmarked smolts passing the trapping site in day j

σ the dispersion parameter of a beta-binomial distribution
ξ the between-day standard deviation of catchability

Table 1. List of symbols used in the model specification.
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where θi,j is the probability that a smolt released on day i
will pass the trap on day j. Thus, probabilities θi,1,…,θi M, de-
scribe the movement of the group of smolts released on day
i. Following the idea of Schwarz and Dempson (1994), the
movement of a release group is modeled by a log-normal
distribution from which the probabilities θi j, are calculated
as

(3) θ λ
i j

i

i

j i
,

( )= − + −







Φ log 0.5

φ

− − − −







I

j i
i j

i

i
,

( )Φ log 0.5 λ
φ

where Ii,j = 1 if j > i and 0 otherwise, λ i is the mean of
log(traveling time) of smolts released on day i, φi is the stan-
dard deviation of the log(traveling time) of smolt group re-
leased on day i, and Φ denotes the cumulative density
function of the standard normal distribution.

Schwarz and Dempson (1994) assumed that the
catchabilities (qj) were independent, i.e., learning, for exam-
ple, about the catchability in day j = 5 contains no informa-
tion about the catchability in other days (qj, j ≠ 5). Similar
assumptions of independence were also made about move-
ment parameters (λ i, φi). If such a model seems reasonable,
independent prior distributions should be assigned to each
catchability and movement parameter.

Our approach is to assume that the daily catchabilities are
only conditionally independent, that is, we assume that daily
catchabilities vary between days according to a distribution.
The parameters of this distribution are not known, but the

data are used to learn about the parameters. Observing data
from days j = 2,…,M, for example, makes it possible to
learn about the between-day mean and variance of the
catchability. The information can be used to draw inferences
about the catchability in day 1 even without using the data
observed in that day. This kind of information transfer can
be formally built into the model by assuming that daily
catchabilities form an independent sample from a distribu-
tion of catchabilities, which then has an unknown mean and
variance. Modeling parameters of the data by another set of
parameters (which are often called hyperparameters) is re-
ferred to as hierarchical modeling. Advantages and proper-
ties of hierarchical modeling in stock assessment are
presented in more detail by Wyatt (2002).

Here we assume that the logit-transformed catchabilities
(log(qj /(1 – qj)) form an independent sample from the Nor-
mal distribution with unknown mean (η j ) and variance (ξ2):

(4) log(qj /(1 – qj))�η j , ξ2 ~ N(η j , ξ2)

η j = ν0 + ν1WTj + ν2WLj

ν0 ~ D(), ν1 ~ D(), ν2 ~ D(), ξ2 ~ D()

The mean is assumed to be a function of environmental
covariates with regression coefficients ν0, ν1, and ν2 . Here,
the considered environmental covariates are water tempera-
ture (WTj) and water level or water discharge (WLj). Hierar-
chical modeling is useful also when modeling the movement
of release groups. It should be reasonable to assume that the
mean traveling time (e iλ ) from the release site to the trap-
ping site is not equal for all release groups. However, it is
also plausible to think that learning about the mean traveling
time from a subset of days would provide us with informa-
tion about the mean traveling time in the remaining days. A
similar reasoning also holds for the standard deviation of the
log(traveling time) (φi). These ideas can be formally mod-
eled in the same way as the catchability:

(5) log( ) | , ~ ( , )φi i iNγ ρ γ ρ2 2

γ ω ω ωi i i= + +0 1 2WT WL

ω ω ω ρ0 1 2
2~ (), ~ (), ~ (), ~ ()D D D D

(6) λ δ π δ πi i iN| , ~ ( , )2 2

δ ψ ψ ψi i i= + +0 1 2WT WL

ψ ψ ψ π0 1 2
2~ (), ~ (), ~ (), ~ ()D D D D

Now we have a flexible model for the movement of each re-
lease group. Environmental covariates are allowed to influ-
ence the expected values of movement parameters, but also
the possibility of unexplained random variation is taken into
account by measuring the between-day variation by vari-
ances ρ2 and π2 .

To make the assessment of the prior distributions of daily
run sizes (uj) easier, we construct the prior in two phases.
First, a prior distribution is assigned to the total size of the
population (U) that passes the trapping site during the M
days of trapping. Then the probability (pj) that a smolt from
this population would pass the sampling site in day j should
be assessed. Obviously, it is necessary that

j

M

=∑ 1
pj = 1.

This condition is satisfied by assigning a Dirichlet prior for

© 2002 NRC Canada

Mäntyniemi and Romakkaniemi 1751

Fig. 1. Directed acyclic graphs (DAG) for (a) model MP and
(b) model MS. The DAG for model MSD is similar to that for
MS, but it does not contain parameter σ. Model MP assumes
constant catchability over time and independent behavior of
individuals, model MSD assumes temporally varying catchability
and independent behavior, and model MS assumes temporally
varying catchability and schooling behavior.
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the vector of probabilities. Given that there are U smolts that
distribute to M days according to the probabilities
(p1,…, pM), the daily run sizes (u1,…,uM) are multinomially
distributed:

(7) (u1,…,uM)�U, (p1,…,pM) ~ Multin(U, (p1,…,pM))

(p1,…,pM)�(a1,…,aM) ~ Dirichlet((a1,…,aM))

U ~ D()

where (a1,…,aM) is a vector of constants that must be given
by the user to represent prior beliefs about the run curve.
The expectation of pj is aj / a jj

M
=∑ 1 and the variance in-

creases as a jj
M
=∑ 1 decreases. The vector (a1,…,aM) can also

be interpreted to represent a prior experiment with a jj
M
=∑ 1

individuals from which aj individuals passed the trapping
site in day j.

Equations 2–7 now define the full probability model for
the mark–recapture data and model parameters. The model
has more parameters than there are data points. However, the
structural assumptions made about the dependencies be-
tween parameters makes it possible to obtain information
about parameter values from data.

Model MS
In model MSD, the assumption of independently moving

smolts gave rise to the assumption that the catches (cj, ri,j) of
smolts would be binomially distributed given the movement
parameters, catchability, and population size (eq. 2). How-
ever, when smolts migrate in schools, they clearly are not
behaving independently. Because of this, binomial distribu-
tion may be too tightly concentrated to properly describe the
behavior of the catches. It is more appropriate to use a distri-
bution that is overdispersed with respect to the binomial dis-
tribution, because when smolts move in groups, it is more
likely to observe higher or lower catches than predicted by a
binomial distribution (Fig. 2). Our choice is to substitute the
binomial distribution by one of its overdispersed alternatives,
the beta-binomial distribution (Gelman et al. 1995). Thus, to
modify the model MSD to model MS, which allows for over-
dispersion in catches, we substitute eq. 2 by the specification

(8) cj�uj, qj, σ ~ Beta-bin(uj, qj, σ)

ri,j�mi, qj, θi j, , σr ~ Beta-bin(mi, qj θi j, , σr ),

σ σ
θ

θr
j i j

i j j

q

q
= +

−
−

−( )
( )

( )
,

,

1
1

1
1

where σ is the dispersion parameter, assumed to be equal
over the whole trapping period and equal for all smolt
groups. The role of σ is to adjust the dispersion of the distri-
bution of the catches. If σ is close to 0, there is very much
overdispersion, and when σ approaches infinity, the limiting
distribution is binomial (Fig. 2). We use a beta-binomial
density of the form

(9) p r q u
u

r u r
( | , , )

( )
( ) ( )

σ = +
+ − +

Γ
Γ Γ

1
1 1

× + + − −
+

Γ Γ
Γ

( ) ( ( ) )
( )

q r u q r
u

σ σ
σ

1

×
−

Γ
Γ Γ

( )
( ) ( ( ))

σ
σ σq q1

where Γ denotes the Gamma function. After a positive-valued
prior distribution is selected for σ, model MS (eqs. 3–8) is
completely defined.

Parameter estimation
In the Bayesian approach, parameter estimation is a proce-

dure of updating the prior distribution p(Θ) of parameters Θ,
which describes the uncertainty about the parameter values
prior to seeing the data, to the posterior distribution p(Θ�X),
which describes the uncertainty about the parameter values
after seeing the data. This is accomplished by an application
of Bayes’ theorem, which combines the information con-
tained in the data via the likelihood function p(X�Θ) with the
prior p(Θ).

(10) p(Θ�X) =
p X p

p X p d

( | ) ( )

( | ) ( )

Θ Θ
Θ Θ Θ∫

∝ p X p( | ) ( )Θ Θ

The formula of the posterior distribution is often so com-
plex that analytical calculations are impossible in practice.
However, samples from the posterior distribution can usually
be obtained by using Markov chain Monte Carlo (MCMC)
simulation (Gilks et al. 1995). After obtaining a very large
sample from the posterior distribution, the histogram of sam-
ples is used as an approximation.

WinBUGS (Spiegelhalter et al. 1995) is a software pack-
age that makes the implementation of MCMC simulation
easy. WinBUGS requires the model specification in a form
of conditional distributions written in WinBUGS language.
The use of WinBUGS and MCMC in the context of fisheries
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Fig. 2. Probability distributions of recaptures in three situations
where the number of released animals (u) is 100 and the
catchability (q) is 0.05. Independent behavior corresponds to
binomial distribution (open bars), and the effect of schooling be-
havior is represented by beta-binomial distributions with disper-
sion parameters σ = 10 (solid bars) and σ = 70 (hatched bars).
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science have been discussed in more detail by Meyer and
Millar (1999) and Millar and Meyer (2000).

Examples

To compare our approach with earlier methods and to il-
lustrate the effects of different assumptions on the resulting
posterior distributions, we analyzed two data sets as exam-
ples of model fitting. We reanalyzed the data provided by
Schwarz and Dempson (1994) describing an Atlantic salmon
smolt population in the Conne River, Newfoundland, Can-
ada. Our second source of data is the trapping of Atlantic
salmon smolts in the River Tornionjoki in northern Scandi-
navia.

We fitted four models to both data sets. Models MP, MSD,
and MS were fitted as they appear in the previous section. In
addition, we fitted a restricted version of MS that did not uti-
lize any environmental covariates (ν1 = ν2 = ω1 = ω2 = ψ1 =
ψ2 = 0). This model is denoted by MS

r .
For the analyses, we assigned vague priors for the model pa-

rameters. To obtain a uniform prior density for catchabilities qj,
the prior distributions of the coefficients ν0, ν1, and ν2 of the
regression model (eq. 4) were set to be N(0,0.5) and the in-
verse of the random variance ξ2 was assigned a Gamma(1,1)
prior density. Diffuse prior distributions were assigned to the
other hyperparameters of the models. The prior density of
the size of the total smolt run U was assumed to be propor-
tional to 1/U in the range between 1 and 5 000 000 smolts
for both rivers. WinBUGS 1.3 MCMC software (Spiegel-
halter et al. 1995) was used to draw large samples from the
posterior distributions of model parameters (WinBUGS code
is available from authors upon request). MCMC simulation
was carried out until Monte Carlo (MC) errors of all param-
eters were less than 5% of the posterior standard deviation.
MC error is the standard error of the mean of the MCMC
samples (Gilks et al. 1995), and it can be made arbitrarily
small by increasing the number of samples from the poste-
rior distribution.

Conne River
The Conne River is 193 km long with a drainage area of

602 km2 (Dempson and Stansbury 1991). Salmon smolts
were caught in 1987 by two counting fences and were marked
with streamer-tags at the upper trap to be recaptured at the
lower trap. The study area, study design, and trapping meth-
odology have been described in detail by Dempson and
Stansbury (1991) and Schwarz and Dempson (1994).

The random variation in movement parameters between
release groups was lower in model MS than in model MSD:
the posterior means of ρ2 and π2 were reduced from 0.20
and 0.14 (MSD), respectively, to 0.18 and 0.10 (MS). The
posterior mean of between-day variation in the catchability (
ξ2) was also reduced from 0.78 (MSD) to 0.28 (MS). This
suggests that when overdispersion of catches is not allowed,
the model explains the extra variation in catches by random
variation in the movement parameters and by between-day
variation in the catchability.

According to the model MS, the data suggest that there are
associations between environmental covariates and model
parameters: the catchability was positively associated with

water discharge (P(ν1 > 0) ≈ 1.00) and water temperature
(P(ν2 > 0) ≈ 1.00). The mean of the traveling time distribu-
tion was not very clearly related to the discharge (P(ψ1 > 0) ≈
0.48) but was negatively associated with the water tempera-
ture (P(ψ2 < 0) ≈ 0.99). The standard deviations of the trav-
eling time distributions were not clearly related to
environmental covariates (P(ω1 > 0) ≈ 0.75, P(ω2 > 0) ≈
0.70).

Including environmental covariates seemed to reduce the
between-day random variation in the model parameters and
also the amount of overdispersion. The clearest reduction
(from 0.19 in model MS

r to 0.10 in model MS) took place in
the posterior mean of π2 , which describes the random varia-
tion in mean traveling times between release groups. Corre-
spondingly, the posterior mean of ξ2 was reduced from 0.37
to 0.28. The amount of overdispersion also decreased when
environmental covariates were used. This can be seen from
the posterior means of σ from models MS (22.12) and MS

r

(11.84) of which model MS
r does not use environmental

covariates. According to model MS, the posterior median of
the catchability varies from 0.1 to 0.6 because of random
variation and environmental covariates (Fig. 3a).

The models MSD, MS, and MS
r produced substantially dif-

ferent posterior distributions for the size of the total smolt
run (Fig. 4a). From these, model MSD produced the most
concentrated posterior distribution. The Bayesian Petersen
model (MP) produced an even more concentrated posterior
distribution than model MSD (Table 2). Although frequentist
confidence intervals and Bayesian posterior probability in-
tervals are conceptually very different, their comparison is
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Fig. 3. Trajectories of 2.5% (dotted line), 50% (solid line), and
97.5% (broken line) percentiles of the posterior distributions of
the catchability (q) in (a) the Conne River and (b) the River
Tornionjoki from model MS. Model MS assumes temporally
varying catchability and schooling behavior.
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nevertheless interesting. The Bayesian version of the model
developed by Schwarz and Dempson (1994) yielded a nar-
rower interval than the original maximum likelihood model.
There is also the difference that the original analysis of
Schwarz and Dempson (1994) used the Petersen method for
the first and for the last part of the run, whereas the
Bayesian version (MSD) used the same model for the whole
data set.

The choice of the model seems to play a major role in the
inference about the smolt run in the Conne River in 1987.
Because there is firm evidence that smolts form schools dur-
ing their migration and because we believe that environmen-
tal conditions can affect the behavior of smolts and the
trapping success, we consider model MS to be the most plau-
sible from among the models presented here for the Conne
River smolt trapping.

In addition, model MS provided some information about
the behavior of smolts: when water temperature rose, marked
smolts tended to speed up their migration. They were also
easier to catch when the water was warm and the discharge
was high. However, these associations may not be causal,
because there may be latent factors affecting such observed

phenomena. The use of environmental covariates reduced
the amount of overdispersion, and thus the coefficient of
variation (CV) of the posterior of the total smolt run was re-
duced by about 10% from model MS

r to model MS.

River Tornionjoki
The River Tornionjoki, which flows into the northern end

of the Baltic Sea, and its headwaters form a 500 km long
border between northern Finland and Sweden. It is the larg-
est, with a drainage area of approximately 40 000 km2, and
most productive of the Baltic salmon rivers. The annual
mean discharge is about 380 m3·s–1, and during the spring
flood (May – early July), when smolts migrate out from the
river, the discharge is commonly 1000–2000 m3·s–1 at the
trapping site near the river mouth.

In the River Tornionjoki, only a single large trap was used
because of logistical problems. Usually the smolt trap was
emptied once a day, but during the peak run, this was done
more frequently. Daily, smolts were marked by streamer-tags
and were immediately transported upstream to a release site.
The smolt trapping data (Table 3) from the summer of 2001
is clearly more sparse than the data used by Schwarz and
Dempson (1994).

According to the results from model MS, environmental
covariates and model parameters had some associations.
The mean traveling time was clearly negatively related to
water temperature (P(ψ2 < 0) ≈ 1) and positively related to
water level (P(ψ1 > 0) ≈ 0.98). The other model parameters
were not that clearly associated with environmental covariates
(P(ν1 > 0) ≈ 0.69, P(ν2 > 0) ≈ 0.36, P(ω1 > 0) ≈ 0.21, and
P(ω2 > 0) ≈ 0.21). Catchability did not seem to vary very
much during the trapping period (Fig. 3b). Model MS
yielded a posterior mode at 650 000 smolts and a standard
deviation of 363 000. The posterior distributions from mod-
els MSD and MS

r were very close to that obtained from
model MS. However, their standard deviations were slightly
smaller, apparently because of the heavier tail of the poste-
rior distribution obtained from model MS (Fig. 4b).

Again, from a biological perspective, we consider model
MS to be the most plausible of these four alternatives. How-
ever, in the case of the River Tornionjoki in 2001, the selec-
tion between models MS, MS

r , and MSD does not substantially
change the inferences that can be made about the size of the
smolt run. In contrast to these, model MP yields posterior
mode at 418 000 smolts and a standard deviation of 22 700.

Discussion

Properties of the models
Using the idea of hierarchical modeling removes the prob-

lem of small sample size often faced in the frequentist
framework. For example, Schwarz and Dempson (1994) did
not include the first and the last days of the smolt trapping
period in their detailed analysis because of sparse data. They
also assumed that the daily catchabilities were independent
and that movement parameters of each release group of smolts
are independent of the movement parameters of the other re-
lease groups. Our approach utilizes the hierarchical structure
in model parameters, which makes it possible to apply the
model over the entire trapping period, with days borrowing
information from each other. This is a general feature of hi-
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Fig. 4. Posterior distributions of the total run size in (a) the
Conne River 1987 and (b) the River Tornionjoki 2001 from the
models MS (solid line), MSD (dotted line), MS

r (solid line with
open squares), and MP (solid line with crosses). Broken line
represents the prior distribution. Densities have different scales
for the sake of illustration. Model MP assumes constant
catchability over time and independent behavior of individuals,
model MSD assumes temporally varying catchability and inde-
pendent behavior, and model MS assumes temporally varying
catchability and schooling behavior. Model MS

r is extracted from
model MS by excluding the use of environmental covariates.
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erarchical Bayes models, known as “shrinkage” (O’Hagan
1994): parameter estimates from days with sparse data are
pulled towards the common mean. As a consequence, there
will be no need to judge afterwards which parameter esti-
mates are to be used in the calculations or to use interpola-
tion to find “better” estimates.

Uncertainty included in the posterior distribution of popu-
lation size is heavily dependent on assumptions made about
the behavior of animals. Salmon smolts in natural conditions
are typically not independent because of their tendency to
form schools during migration. Hence, methods that assume
independent behavior appear far too optimistic about the
precision of the estimation procedure. Our models MS and
M r

S take into account this additional uncertainty by allowing
for overdispersion in recapture data. They also take into ac-
count other possible latent factors affecting catchability by
allowing for random variation in the daily catchabilities.

As shown by the example from the Conne River, allowing
for overdispersion may also have an impact on point esti-
mates of the population size. This is likely to happen when
catchability is low and the amount of overdispersion is high.
By allowing for overdispersion, we allow the probability that
large schools of animals pass the trapping without getting
caught to increase. If overdispersion gets support from the
observed data, the mode of the posterior distribution of the
population size will support larger population sizes than in
the case of independent behavior. However, assumptions about
the temporal variation in catchability also play a role in this
comparison, because the posterior distribution of the popula-
tion size is sensitive to daily variation in catchability during
the days with high catches of unmarked animals.

As demonstrated in methodological literature (e.g., O’Hagan
1994; Gelman et al. 1995) and also here, the Bayesian frame-
work allows for explicit incorporation of prior knowledge. In
our examples, there may be substantial prior knowledge
about behavior and movement of the smolts, size and distri-
bution of the smolt population, and possible effects of envi-
ronmental factors on sampling or smolt migration.

One more key point in using the Bayesian framework is
that the end product of the analysis is a probability distribu-
tion of the population size, which is useful when making
management decisions under rigorous assessment of uncer-
tainty (McAllister and Kirkwood 1998; Wade 2000).

Model selection
Our view is that the model selection for mark–recapture

data should be based primarily on the plausibility of a model.
That is, one should make sure that the assumptions of the

model correspond, as well as possible, to substantive biolog-
ical knowledge about the animal behavior and about the
properties of the study design. Formal model selection pro-
cedures are useful only when comparing models that are
equally plausible from a biological perspective. Formal
methods of model selection and model averaging, like the
ones proposed by King and Brooks (2001), would be useful
when comparing different structural assumptions, for exam-
ple, whether to use a probit-link function instead of a logit-
link one in the regression equation of daily catchability.

The adequacy of the selected model can be assessed by
comparing the posterior predictive distributions of the model
with the observed data (Gelman et al. 1995). In the case of
mark–recapture data, the interpretation of such model-
checking results is not straightforward: most of the recap-
tures are zeros, which are easily predicted by almost any
model. Because of the large number of zeros, most of the re-
siduals are also very close to zero, making their interpreta-
tion very difficult. For these reasons, we have not included
model-checking procedures in this work.

Violations in model assumptions
All mark–recapture models have basic assumptions that

should be filled in the real world to achieve some credibility
for the analysis. Our model MS assumes that there is no
mark loss or mortality of marked fish. To some extent, these
assumptions can be empirically tested by monitoring marked
fish in captivity.

Another important assumption made in all mark–recapture
models is that marked individuals should have catchability
equal to that of unmarked individuals. In the case of aggre-
gating species, marked and unmarked individuals should
also show similar aggregation patterns. However, marked in-
dividuals are allowed to move at different speeds than un-
marked individuals, because only the schooling behavior of
fish when passing the trap matters in the estimation of the pop-
ulation size. Violation of the assumption of equal catchability
has different consequences depending on whether the marked
individuals exhibit trap shyness or trap happiness.

Consequences of violation of model assumptions are basi-
cally similar in both the Bayesian and the frequentist frame-
works. In the context of mark–recapture of smolts, for
example, Dempson and Stansbury (1991) have treated the
subject. If there existed knowledge about violation of the
model assumptions, the Bayesian framework would allow
flexible ways to incorporate quantitative correction of these
sources of errors. For instance, one could introduce a param-
eter representing the difference in the catchability of marked
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Bayesian models Mean Mode SD 2.5% 97.5% CV

Mr
S 88 700 78 000 18 000 63 000 130 000 0.20

MS 70 500 67 000 12 800 50 400 101 000 0.18
MSD 69 500 69 000 3 000 63 700 75 800 0.04
MP 66 500 66 500 1 930 62 900 70 500 0.03

ML models MLE SE 95% confidence interval

Schwarz and Dempson 69 609 3 565 62 500 – 76 740
Petersen 67 250 2 159 62 942 – 71 578

Note: CV, coefficient of variation; SD, standard deviation; SE, standard error.

Table 2. Run size estimates for the Conne River smolt population in 1987 produced by different models
together with the maximum likelihood (ML) estimates provided by Schwarz and Dempson (1994).

J:\cjfas\cjfas59\cjfas5911\F02-146.vp
Thursday, December 05, 2002 11:07:13 AM

Color profile: Disabled
Composite  Default screen



© 2002 NRC Canada

1756 Can. J. Fish. Aquat. Sci. Vol. 59, 2002

R
ec

ov
er

ie
s

by
nu

m
be

r
of

da
ys

fo
ll

ow
in

g
re

le
as

e

D
at

e
m

1
2

3
4

—
7

—
13

—
15

—
17

—
20

21
c

W
T,

°C
W

L
,

0.
1

m

28
M

ay
79

2
1

1
1

83
6.

21
10

.0
0

29
M

ay
26

27
5.

96
10

.0
0

30
M

ay
9

1
1

9
6.

48
9.

60
31

M
ay

77
1

1
1

83
7.

70
8.

70
1

Ju
ne

13
6

29
1

14
3

9.
00

7.
90

2
Ju

ne
60

3
22

7
10

.4
0

6.
90

3
Ju

ne
18

2
9

35
5

11
.2

3
6.

30
4

Ju
ne

13
8

4
14

6
11

.5
2

5.
60

5
Ju

ne
16

9
11

1
17

6
11

.0
7

5.
00

6
Ju

ne
33

60
10

.7
4

4.
90

7
Ju

ne
41

9
78

11
.8

1
5.

20
8

Ju
ne

73
28

5
12

.1
4

5.
30

9
Ju

ne
79

1
16

9
12

.6
4

5.
80

10
Ju

ne
24

2
9

1
70

8
13

.2
7

5.
90

11
Ju

ne
25

1
24

1
81

5
12

.9
8

6.
50

12
Ju

ne
28

6
7

3
81

0
12

.5
3

8.
00

13
Ju

ne
15

2
3

6
84

7
12

.7
4

10
.4

0
14

Ju
ne

39
3

8
2

21
2

12
.9

0
11

.9
0

15
Ju

ne
20

5
na

1
34

5
13

.6
7

13
.0

0
16

Ju
ne

22
3

3
na

na
41

3
14

.0
9

13
.7

0
17

Ju
ne

21
8

3
na

na
32

4
14

.6
6

13
.8

0
18

Ju
ne

41
8

17
na

na
57

1
15

.2
7

13
.4

0
19

Ju
ne

46
4

56
1

na
na

na
64

2
15

.4
1

13
.0

0
20

Ju
ne

48
5

36
1

na
na

na
58

3
15

.7
5

12
.8

0
21

Ju
ne

17
7

27
na

na
na

na
2

06
1

16
.1

9
12

.6
0

22
Ju

ne
18

9
19

1
na

na
na

na
1

40
5

16
.3

3
12

.0
5

23
Ju

ne
13

7
9

na
na

na
na

na
63

1
17

.3
4

11
.1

0
24

Ju
ne

0
na

na
na

na
na

16
3

18
.1

8
10

.6
0

25
Ju

ne
16

0
15

na
na

na
na

na
24

1
18

.9
1

9.
20

26
Ju

ne
0

na
na

na
na

na
25

5
19

.5
0

8.
20

27
Ju

ne
66

na
na

na
na

na
22

1
20

.0
3

7.
50

28
Ju

ne
0

na
na

na
na

na
12

9
19

.9
2

6.
90

29
Ju

ne
0

na
na

na
na

na
na

56
19

.9
4

6.
20

30
Ju

ne
44

na
na

na
na

na
na

52
19

.8
6

5.
70

1
Ju

ly
20

na
na

na
na

na
na

22
19

.8
8

5.
05

2
Ju

ly
0

na
na

na
na

na
na

na
7

19
.5

8
4.

90
3

Ju
ly

0
na

na
na

na
na

na
na

na
7

18
.8

1
4.

45
4

Ju
ly

0
na

na
na

na
na

na
na

na
na

2
18

.7
5

4.
15

5
Ju

ly
0

na
na

na
na

na
na

na
na

na
na

10
19

.3
1

4.
10

To
ta

l
52

32
31

4
S

tr
ea

m
er

-t
ag

ge
d

sm
ol

ts
re

ca
pt

ur
ed

25
37

3

N
ot

e:
C

ol
um

ns
w

ith
no

re
ca

pt
ur

es
ar

e
om

itt
ed

to
sa

ve
sp

ac
e.

m
,

nu
m

be
r

of
re

le
as

ed
sm

ol
ts

;
c,

nu
m

be
r

of
un

m
ar

ke
d

sm
ol

ts
ca

pt
ur

ed
;

W
T

,
w

at
er

te
m

pe
ra

tu
re

;
W

L
,

w
at

er
le

ve
l;

na
,

no
t

av
ai

la
bl

e;
no

en
tr

y,
0.

T
ab

le
3.

T
he

da
ta

fr
om

th
e

sm
ol

t
tr

ap
pi

ng
ex

pe
ri

m
en

t
in

th
e

R
iv

er
To

rn
io

nj
ok

i,
20

01
.

J:\cjfas\cjfas59\cjfas5911\F02-146.vp
Thursday, December 05, 2002 11:07:14 AM

Color profile: Disabled
Composite  Default screen



and unmarked animals and express the knowledge about the
difference in the form of a prior probability distribution.

Model modifications and future research
There are many variations and extensions of our model

that may be of interest in ecological studies. For example,
the population of interest may include distinguishable sub-
groups of animals, such as wild and hatchery-reared individ-
uals among salmon smolts. Because subgroups with different
histories may differ, for instance, in their behavior in rela-
tion to sampling procedures, it may be of interest to model
the subgroups separately. For example, the means of the
catchability and (or) movement distributions could differ across
groups, whereas the other model parameters could remain
equal.

In models MSD and MS, we assumed that daily catchabilities
vary randomly between days, given that the mean and vari-
ance are known. However, it could also be justified to as-
sume that the random deviations in catchabilities in
successive days are correlated. This idea could be imple-
mented by using an autoregressive structure in the prior dis-
tribution. This kind of assumption may improve the precision
of posterior distributions for catchabilities and the precision
of the posterior distribution of the total run size.

We assumed that the amount of overdispersion does not
change during the experiment. This may not be appropriate
in all cases, because animals may change their tendency to
aggregate during the experiment. The aggregation pattern
may also vary spatially, which is important to take into ac-
count when multiple recapture sites are used.

In our examples we used vague prior distributions of model
parameters. In practice, prior information about various pa-
rameters might well exist. For example, prior information
about the smolt run may be obtained from a probabilistic
salmon parr population model, which uses the data from
sampling of parr. If a mark–recapture experiment is per-
formed according to a constant design in successive years, it
is possible to obtain prior information about the relationship
between environmental factors and model parameters. For
example, the basic level of catchability may vary independ-
ently between years, but the regression slopes of environ-
mental covariates might be quite similar each year. Meta-
analysis of multiple years could also be used to learn about
the shape of the run curve and its relationship with environ-
mental factors like water temperature as a trigger of the
smolt run. Hierarchical Bayesian meta-analysis of this kind
could also be extended to cover mark–recapture studies in
several distinct populations of an animal species. All of
these diverse ways to incorporate prior information in the
analysis will eventually result in reduced posterior uncertainty
about the population size, provided that the prior information
is not in strong disagreement with the information contained
in the observed data.
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