Top predators and eDNA Some ecological applications

karl.lundstrom@slu.se

Swedish University of Agricultural Sciences

Department of Aquatic Resources

eDNA in environmental monitoring FOMA seminar at SLU Aqua Dec. 3 2014

Some ecological applications

Diet

- Ecosystem dynamics, predator-prey interactions
- Quantification of food demand
- Exceptional species
 - Invasive
 - Threatened
- Presence
 - Detection of top predators
- Additional thoughts
 - Prey sub-populations
 - Host-parasite interactions
 - Genetic identification of individuals

Seals in Swedish waters

Seals cause damage to fishing gear and catches

But...

- What is the significance of seals in the food web?
- What is the impact of seals on fish stocks?
- How are seals affected by environmental changes?

Seals

Hansson et al. 2007. Ambio: 36: 265-271

Diet analysis of aquatic top predators

Prey remains from digestive tracts

- Visible prey remains
- DNA

- Further dietary information
 - Fatty acids
 - Stable isotopes

Long-term dietary patterns

DNA analysis of aquatic top predator diet

Advantages

- Accurate identification
- Fast
- Morphological identification (taxonomic expertise) not needed
- Continual development

Limitations

- No information about prey size
- Unclear quantification of weight proportions ("roughly proportional")
- Contamination risk
- No detection of cannibalistic feeding (?)

Traditional analysis

Advantages

- Prey size
- Simple

Limitations

- Time consuming
- Subjective
- Erosion and retention of hard parts
- Dependent on morphological identification

DNA analysis of seal diet

- Digestive tract contents
 - Stomachs
 - Intestines
 - Faecal scats

Studies in the Baltic Sea

- University of Oulu, Swedish Museum of Natural History
- Faecal scats (n=93, Florin et al. 2013)
- Digestive tracts (n=31, Strömberg et al. 2013)
- Digestive tracts (n=160, ongoing evaluation)

DNA analysis of seal diet - Methodology

DNA analysis of seal diet - Methodology

- 1. DNA extraction from digestive tract contents
- 2. PCR amplification
 - 16S rDNA genetic marker
- 3. Sequencing
- 4. Prey identification
 - Matching with DNA sequence databases
- 5. Quantitative assessment of species sequences

DNA analysis of seal diet - Results

DNA *vs.* hard parts from grey seal digestive tracts n=155

	DNA	Hard parts
No of seals with identifiable prey	155	132

	DNA	DNA Hard parts	
No of species found	34	33+unknown	

DNA analysis of seal diet - Results

DNA vs. hard parts from grey seal digestive tracts

Occurrence (%)

Prey	Hard parts	DNA	Prey	Hard parts	DNA
Herring	46% ——	→ 62%	Flounder	3% ——	→ 5%
Perch	23%	→ 28%	Eel	2%	→ 4%
Cyprinids	21% ——	→ 32%	Whitefish+vendace	9% ——	→ 17%
Eelpout	17% ——	→ 25 %	Salmon+trout	2% ——	→ 5%
Smelt	12% ——	→ 14%	Stickleback	1% ——	→ 8%
Sprat	8% —	→ 24%	Pike	1%	1%
Pike perch	5% ——	→ 17%	Gobiidae	10%	7%
Cod	4% ——	→ 8%			
Ammodytidae	3%	3%			

DNA analysis of seal diet - Results

DNA vs. hard parts from grey seal digestive tracts

Ongoing DNA projects 2014-2015

- Analysis of seal diet
 - Grey seals in the Baltic Sea
 - Harbour seals in the Skagerrak Large material available!
 - Prey DNA in digestive tract contents
 - Faecal scats
 - Hunted (and bycaught) animals
- Analysis of cormorant diet
 - Baltic Sea
 - Prey DNA in digestive tract contents
 - Hunted birds

Some additional thoughts

Prey sub-populations

- Predation on local fish populations?
 - Dietary resolution
 - e.g. can seal predation on local cod stocks be detected?

Host-parasite interactions

- Occurrence of seal worm/cod worm
 - Monitoring of parasite DNA in prey species and seal digestive tracts
- Relationship between parasites and diet
 - e.g. trematode liver infections in Baltic grey seals

Genetic identification of individuals

- Faecal scats
 - From which species do we collect?
 - e.g. harbour seals vs. grey seals
 - From how many individuals do we collect?

- Population dynamics?
- Population size?

Conclusion

- DNA barcoding is well suited for dietary monitoring
 - Used in combination with other dietary methods

- Best practice?
 - Sampling (in the field)
 - Preservation of samples
 - Sub-sampling (to the lab)

Standard protocols

- Combination of disciplines
 - Ecology
 - Technique (the lab)
 - Bioinformatics
 - Statistics

All involved at an early stage of the project

Acknowledgements

- SLU DNA barcoding FOMA network
- Swedish Museum of Natural History
 - Centre for genetic identification
 - Department of Environmental Research and Monitoring
- Finnish Game and Fisheries Research Institute
- County Administrative Boards
 - Gotland
 - Stockholm
 - Gävleborg

