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• Statistics@SLU and PhD courses

• Time for a quantitative analysis

• A lot of tests (Adam)

• Not so many tests (Jan-Eric)

Content



Statistics@SLU
SLU:s statisticians (most of them) at a joint meeting in Alnarp in June 2022.



Statistics@SLU
• Åsa Lankinen is the new representative in the steering group.

• The mission is to help employees at SLU with statistical problems.

• Statistics@SLU should also coordinate PhD courses in statistics.

• The manager is Claudia von Brömssen from Ultuna, 
deputies are Magnus Ekström from Umeå and Jan-Eric Englund.



Time for a quantitative analysis
Best Practice project to help students without
statistical background to write their theses.

The project have five headings:

• Define the problem

• Experimental Design

• Collection of data

• Data analysis

• Scientifically based conclusions



Time for a quantitative analysis
The idea is to help the student to write the thesis based on quantitative
data. The front page describes the different steps.

• Problem

• Hypotheses

• Statistical formulation of
the hypotheses

• Collect the data

• Test the hypotheses

• Evaluation of the result

• New ideas for new thesis



• Strong reliance on null hypothesis significance testing

• Non-significant results go unpublished

• Effects sizes are exaggerated

• Results are not reproducible

• The American Statistical Association

In sum, “statistically significant” — don’t say it and don’t use it.

• Alternative measures of effect or confidence intervals

• Evaluate based on experimental setup, not the outcome

Last time we spoke (spring 2021)



• The significance level is the probability of rejecting a true null hypothesis

• Multiple testing, higher overall significance level

Multiple testing

No of tests Overall significance

1 5%

2 1 − 0.952 = 9.75%

10 1 − 0.9510 = 40.1%

• The probability of false discoveries
is the family-wise error rate 

(FWER)



• We can easily justify many tests on a single dataset

• Take a simple experiment with four treatments and two response variables

• Data transforms: log, squares and square-roots, ratios or differences between variables, interval classes, 

excluding extremes, excluding zeroes, drop treatment groups, merge treatment groups, divide by values in 

control group

• Tests: one-way Anova, Ancova, pairwise post-hoc comparisons, non-parametric tests, pairwise non-parametric

tests, ordinal models after classification, correlation and regression between variables, logistic after 0/1-

classification of either response

So many things to do



• Controlling the false discovery
rate (FDR)
– The proportion of significant results

which are false positives

• Controlling the family-wise error
rate (FWER)
– The probability of some zero-effect

being significant

P-value adjustments
Declared

non-
significant

Declared
significant Total

True null 𝑈𝑈 𝑉𝑉 𝑚𝑚0

Non-true
null 𝑇𝑇 𝑆𝑆 𝑚𝑚 −𝑚𝑚0

𝑚𝑚 − 𝑅𝑅 𝑅𝑅 𝑚𝑚



• The Benjamini-Hochberg procedure
1. Perform m tests, each results in a p-value

2. Order by p-value. Let i be an index of the order

3. Find the largest p-value which is smaller than 𝑖𝑖
𝑚𝑚
𝛼𝛼

4. Reject all hypotheses with p-values below the value from (3)

• This will give an overall tests with FDR at most equal to 𝛼𝛼

• Typically, at most five percent of discoveries will be false positives

False discovery rate

Benjamini Y, Hochberg Y (1995). Controlling the false 

discovery rate: a practical and powerful approach to 

multiple testing. Journal of the Royal Statistical Society, 

Series B. 57 (1): 289–300. MR 1325392.
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Example 1 (and only)
There is a standard method called Control.

There are three new treatments, labelled A1, A2 and A3. 

A1, A2 and A3 are in fact identical, but better than the Control.

A completely randomized design with five replicates per treatment.

The yields are (simulated data to illustrate my ideas!):

Control: 10.8, 10.7, 11.5, 10.5,   9.2 mean: 10.56 (True value: 10)
A1: 15.2, 14.0, 14.9, 15.3, 15.0 mean: 14.89 (True value: 15)
A2: 16.0, 13.1, 15.8, 15.7, 15.9 mean: 15.30 (True value: 15)
A3: 14.7, 15.5, 14.5, 15.8, 14.4 mean: 14.99 (True value: 15)



What is the problem?
With one null hypothesis this is the table illustrating wrong decisions
when the significance level is 5%.

From the example: 

If we only consider whether Control = A1 = A2 = A3, the risk is 5% that the 
conclusion from the experiment is that there is a difference if there is no 
difference.

Reject null hypothesis Do not reject null hypothesis

Null hypothesis is true 5% 95%

Null hypothesis is not true Power 1 − Power



What is the problem?
Now consider the six pairwise comparisons with null hypotheses

• Control = A1

• Control = A2

• Control = A3

• A1 = A2

• A1 = A3

• A2 = A3

There are two different situations:

 All null hypotheses are true ( ⇒ Control = A1 = A2 = A3 )

 There is at least one false null hypothesis.



What is the problem?
If all null hypothesis are true, use the previous table with a small 
modification:

From the example:

• True null hypothesis: A1 = A2, A1 = A3 and A2 = A3

• False null hypothesis: Control = A1, Control = A2 and Control = A3

Reject at least one of the 
true null hypotheses

Do not reject any of the true
null hypotheses

All null hypotheses are true 5% 95%

There are at least one false
null hypothesis

What about the false null
hypotheses? 

Are they rejected?

What about the false null
hypotheses?

Are they rejected?



Confidence interval
Make confidence intervals for the differences between all pairs.

The probability that all confidence intervals cover the true value should
be at least 95% to satisfy FWER.

Remember:

If there is no difference between two treatments, the confidence interval
for the difference should cover 0, but with FWER we also guarantee for 
the false null hypotheses.

From the example: 

95% probability that the intervals for A1 − A2, A1 − A3, A2 − A3 covers 0 
and Control − A1, Control − A2 and Control − A3 covers 5.



Hypothesis testing
The probability that at least one true null hypothesis is rejected is 
smaller than 5% and don’t bother about the false null hypothesis.

It seems more effective to use hypothesis testing, but sometimes you
need confidence intervals in your analysis.

Note: We can’t identify and don’t know the number of true null
hypotheses.



Some of the solutions for m tests
• Bonferroni: Use 0.05/m as the significance level. 

⇒ Low power. 
Confidence intervals with simultaneous confidence level 95%.
Can adjust p-values in general to prevent mass significance.

• Tukey: Use the computer to find the levels for the p-value. 
⇒ Lower power if there are false null hypotheses, but well-known.

Confidence intervals with simultaneous confidence level 95%.

• Holm: An alternative from a paper from 1979 by Sture Holm.
⇒ Only for hypothesis testing.

The guarantee is only for the true null hypotheses.
Can adjust p-values in general to prevent mass significance.
Not one of the alternatives in SAS but available by p.adjust in R.



Graphical illustration for four treatments
Sort the p-values from the smallest to the largest:

1. Control = A2 p-value 1.4⋅10-7

2. Control = A3 p-value 3.4⋅10-7

3. Control = A1 p-value 4.6⋅10-7

4. A1 = A2 p-value 0.45
5. A2 = A3 p-value 0.57
6. A1 = A3 p-value 0.85
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Graphical illustration for four treatments
Limits for the p-values; note the scale on the second axis!
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The test procedures
Bonferroni: Use 0.05/6 = 0.0083 as the limit for all p-values.

Tukey: Find a general limit from a table or the computer. 
With four treatments and six comparisons the limit is 0.0113.

Holm: 

• Start with Bonferroni’s 0.05/m for the smallest p-value.

• If the p-value is larger, stop the process and all tests are not rejected,
If the p-value is smaller, reject this test and continue the process.

• Continue with Bonferroni’s test for m−1 tests, that is 0.05/(m−1).

• If the p-value is larger, stop the process and say that this and all            
remaining tests are not rejected.
If the p-value is smaller, reject the test  and continue the process.

• … Stop when you cannot reject or when all tests are rejected.
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Simulation with Control (10 000 simulations)
• Mean of Control: 10. Mean of all Treatments: 15

• Common standard deviation 1, 
Normal distributions, 10 000 simulations



Simulation with Control (10 000 simulations)
• Bonferroni: Use 0.05/6 = 0.0083 as the significance level in all tests. 

At least one significant difference between A1, A2 and A3 in 2.4% of the 
simulations.

• Tukey: Use 0.0113 as the significance level in all tests (from a table).
At least one significant difference between A1, A2 and A3 in 3.1% of the 
simulations. 

• Holm: 
At least one significant difference between A1, A2 and A3 in 4.3% of the 
simulations. 
⇒ Best?



Graphical illustration without Control
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Simulation without Control (10 000 simulations)
• Bonferroni: Use 0.05/3 = 0.0167 as the significance level in all tests.

At least one significant difference between A1, A2 and A3 in 4.27% of the 
simulations. 
⇒ OK, but only because there are just three treatments!

• Tukey: Use 0.0205 as the significance level in all tests (from a table).
At least one significant difference between A1, A2 and A3 in 5.21% of the 
simulations. 
⇒ OK

• Holm:
At least one significant difference between A1, A2 and A3 in 4.27% of the 
simulations. 
⇒ OK



Graphical illustration for 15 treatments (105 pairs)
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Conclusion
• If the inference is of importance, use a family wise correction (FWER).

• If screening is of importance, use false discovery rate (FDR)

• The control matters − Treatment comparisons will depend on dropping or 
keeping the control.

• Methodology depends on scientific field and computer package. 



Thank you for your attention

Adam.Flohr@SLU.SE

Jan-Eric.Englund@SLU.SE
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