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ABSTRACT: Better models of genetic evaluation for 
mastitis can be developed through longitudinal analysis of 
somatic cell count (SCC) which usually is used as a proxy 
for mastitis. Mastitis and recovery data with weekly 
observations of SCC were simulated for daughter groups of 
60 and 240 per sire. Data were created to define cases: 1 if 
SCC was above a pre-specified boundary, else 0. A 
transition from below to above the boundary indicates 
probability to contract mastitis, and the other way indicates 
recovery. The MCMCglmm package was used to estimate 
breeding values. In the 60 daughters group, accuracies 
ranged from 0.53 to 0.54 for mastitis and 0.22 to 0.23 for 
recovery. Whereas, in the 240 daughters group accuracies 
ranged from 0.83 to 0.85 for mastitis and 0.57 to 0.65 for 
recovery. Reasonable accuracies can be achieved from SCC 
based estimates. 
Keywords: Mastitis liability; Recovery liability; Somatic 
cell count 
 
 

Introduction 
 

Mastitis, an inflammation of the mammary gland, 
is usually caused by a bacterial infection. Occasionally, it 
might arise from chemical, mechanical, or thermal injuries. 
It is a common and costly disease in modern dairy farms. In 
addition to its economic importance (due to discarded milk, 
reduced milk production, culling cows and treatments cost), 
dairy cows welfare and consumers’ demand to antibiotics-
free milk and milk products are among the main mastitis-
related threats to the modern dairy farms. In addition to this 
the well documented (Carlén et al. (2006); Hinrichs et al. 
(2005)) unfavorable genetic correlation between milk 
production and mastitis calls for the inclusion of mastitis in 
a dairy cattle breeding program. Better modelling and 
genetic evaluation of mastitis are a requirement for 
breeding mastitis free and/or resistant dairy cows. 

Usually genetic evaluation of mastitis liability is 
performed either with cross-sectional or longitudinal 
approaches (Franzén et al. (2012)). In cross-sectional 
models, lactations are considered as a static process and 
data is recorded when a mastitis event is observed while 
mastitis itself is a developmental process. In longitudinal 
models, developments that occur throughout a lactation 
may have to be considered by the model (Franzén et al. 
(2012)). Therefore, longitudinal modelling captures as 
much genetic information as possible by analyzing the 
changes or developments that each cow experiences during 
lactation. According to Franzén et al. (2012), most of the 
previous genetic evaluations of mastitis focused only on 

one direction of the disease: mastitis susceptibility, thereby 
ignoring the recovery process.   

In the genetic evaluations of mastitis, the difficulty 
or lack of routine records (Carlén et al. (2006)) of the most 
common type of mastitis (subclinical mastitis) cases has led 
to the use of indirect but related measures, such as: somatic 
cell counts (SCC), udder conformation and others.  Among 
these related traits SCC is widely used as a proxy for  
mastitis (Uhler 2009) due to its higher correlation with 
clinical mastitis. In addition, SCC is unfavorably correlated 
with milk production and consequently cow welfare. 

Most of the recent genetic analyses using SCC 
data (Franzén et al. (2012)) focused on single-trait models, 
ignoring the possible genetic correlation between the 
liability of becoming sick and the recovery process. In the 
present study we perform a multi-trait sire model 
longitudinal genetic analysis to evaluate the level of 
accuracy achieved from SCC based estimates compared to 
the simulated mastitis liability and recovery. Accuracies 
were also compared on different daughter groups per sire 
and level of mastitis incidence (cases per lactation). 
 

Materials and Methods 
 

Data. Simulation software by Carlén et al. (2006) 
and Franzén et al. (2012) was used to generate records on 
milk production, interval between calving and first 
ovulation, conception liability,  mastitis liability and 
recovery. 

A mastitis history for the whole lactation was 
generated on the basis of liability for contracting and 
recovering from mastitis. Weekly SCC values were 
generated on the basis of this mastitis and recovery history.  
SCC on non-mastitic test-days followed a baseline lactation 
curve, to which random noise was added. The level of SCC 
was elevated on mastitic test-days. 

Two level of mastitis incidence or cases per 
lactation (28% and 95%) and three different genetic 
correlations ( rg = 0.0, rg = 0.2 and rg = -0.2) between 
mastitis liability and recovery were considered. Five 
replicates were used for each case. The cows were 
daughters of 100 and 400 unrelated sires distributed over 
1200 herds resulted into two daughter group sizes of 240 
and 60 per sire. More details on the parameters used to 
simulate the data sets can be found in Franzén et al. (2012). 
 

Binary data were created based on the generated 
weekly SCC observations to define whether a cow was in a 
disease (D) or healthy (H) state. The SCC based boundary 
(B(τ)) was allowed to vary along the lactation curve (L(τ)) 



according to this multiplier: B(τ) = m × L(τ); where τ is 
time in lactation, starting at calving. If a cow’s weekly SCC 
exceeded this boundary then the cow was considered to 
have mastitis. The multiplier factor (m = 10) used to create 
the binary data lowers chances of misclassifications 
(Franzén et al. (2012)). If a cow’s weekly SCC was larger 
than 200000 cells/mL then the cow was considered 
mastitic. 

Transition probability models. For a cow in 
lactation, there is a possibility of contracting mastitis and 
recovery. A cow may contract mastitis and recover and vice 
versa according to the SCC level so that transition from H 
to D (tranHD) and from D to H (tranDH) is possible within 
a given lactation. This phenomenon was modeled with 
transition probability model,Ti , that shows the transition 
probabilities for individual cow i going from H to D state or 
from D to H or remain in a current state.  

 

Ti  = � π(tranHD) 1 − π(tranHD)

1 − π(tranDH) π(tranDH) � 

Where:  
π(tranHD) = Probability of moving from a H to a D 
                   state  
π(tranDH) = probability of moving from a D to a H 
                   state 
1 − π(tranHD) = probability of remaining in the H 
                          state 
1 − π(tranDH)) = probability of remaining in the D 
                           state 
 
Thus, the sequence of H’s and D’s indicating 

whether or not a cow had mastitis on subsequent test days 
was converted into a new sequence of state changes: 0 if a 
cow remained in the same state and 1 if the cow changed 
state. 

Statistical modelling. A multi-trait sire model was 
fitted to the binary data of transitions. The analyses were 
simplified by considering the transition data as normally 
distributed traits. Thus, the transition probability πijk  which 
is defined as the probability that a transition occurs for cow 
i, daughter of sire j for an observation k was modelled as: 

 
Yijk= β +  Ci +  Sj+ eijk   

Where: 
Yijk = 1 if a transition occurs, otherwise 0.  
β   = liability of mastitis or recovery for an  

      average cow 
Ci   = random sire effect 
Sj   = random cow effect 
eijk = random residual effect for cow i 
 
Analysis, Sampling and Bayesian inference. The 

analysis was performed in R (R Development Core Team 
2013) with the MCMCglmm package (Hadfield 2010). The 
package implements Markov chain Monte Carlo (MCMC) 
routines for fitting multi-response generalized linear mixed 
models.  

The MCMCglmm was run with its default values 
of 13000 iterations, 3000 burn-in and a thinning interval of 

10. Point estimates of parameters were derived from the 
samples of the posterior distribution. Before considering the 
posterior estimates in further analysis, convergence 
diagnosis methods (trace plot, density plot and cross-corr) 
from the coda package (Martyn et.al. (2006)) were 
performed to evaluate the model fitness and sampling 
behavior of the MCMC procedure.  

Breeding values were estimated for the two 
transition directions (tranHD and tranDH). Correlations 
between true breeding values (TBV), generated from the 
simulation process, and estimated breeding values (EBV) 
from the MCMCglmm analysis were calculated as the 
accuracy in both directions. The multi-trait model analysis 
provides an option to estimate the genetic correlations (�̂�g) 
between the two transition directions. 

 
Results and Discussion 

 
Sampling and independency. Results from the 

MCMC chains were analyzed using the coda package in R. 
The trace plot and posterior distributions of the variance 
components (sire variance and covariance) showed that the 
MCMC algorithm was well converged (Figure 1). There are 
some autocorrelations in the sampling process of the 
MCMC as trends are apparent in the top left-hand and 
bottom right-hand of the plot (Figure 1).  

 

 
Figure 1. Markov chain Monte Carlo trace and density 
plots of sire variance and covariance between the two 
directions (tranHD, tranDH). 

 
Estimation of accuracies. The estimation 

accuracies (correlations between TBV and EBV) in the 
smaller daughters group per sire ranged from 0.53 to 0.54 
and from 0.22 to 0.23 for mastitis contract and recovery 



respectively (Table 1). For larger daughters group per sire 
the accuracies ranged from 0.83 to 0.85 for mastitis 
liabilities and from 0.57 to 0.65 for the recovery process. 
These estimates are reasonably precise as the standard 
errors in all cases ranged from 0.00 to 0.03. In earlier 
studies  by Franzén et al. (2012) higher accuracies of EBV  
were reported for larger daughter group size (150) coupled 
with higher mastitis frequencies. Accuracies were more 
influenced by daughters group per sire than by mastitis 
cases per lactation (results not presented). 

 
Table 1.  Average correlation between true breeding 
value (TBV) and estimated breeding value (EBV). 
Daughters per sire  60  240 

rg  HD1 DH2 �̂�g3  HD DH �̂�g 

rg = 0.0 
 0.53 0.23 0.00  0.85 0.62 0.00 
 0.01 0.00 0.00  0.01 0.03 0.00 

rg = 0.2 
 0.53 0.22 0.00  0.83 0.57 0.00 
 0.02 0.02 0.00  0.02 0.02 0.00 

rg = -0.2 
 0.54 0.23 0.00  0.85 0.65 0.00 
 0.02 0.01 0.00  0.01 0.01 0.00 

Figures in bold represent average correlation between TBV and EBV of 5 
different replicates. Under each average correlation is the standard error of 
estimate for these replicates.  
1HD = mastitis liability; 2DH = recovery process. 
 3�̂�g = estimated genetic correlations between HD and DH.  

 
Our estimations of accuracies were not dependent 

on the simulated values of possible genetic correlations 
between mastitis and recovery liabilities (rg = 0.0, rg = 0.2 
and rg = -0.2). Furthermore, the estimated genetic 
correlations did not show any trend with these simulated 
correlations. The average estimated genetic correlation 
(Table 1) was approximately zero (r�g ≈ 0). 

For the disease to health direction the information 
in the data was much lower. Because there were large 
number of cows without mastitis (small number of tranDH) 
that resulted into poor estimates (0.25) of accuracies 
(Franzén et al. 2012). In the present study we have achieved 
higher accuracies (0.65) by increasing the daughter groups 
per sire while keeping the mastitis frequencies the same. 
The larger daughters group represented in this study is not 
uncommon in the modern dairy farms. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 
The model generates higher accuracies for the 

health to disease transitions for both daughter group sizes. 
The more daughters per sire, the more accurate the 
estimates were. For the disease to health direction achieving 
higher accuracies with the smaller daughter group size was 
not possible. However the model gives an option to include 
the two direction of the disease in the analysis. It also 
demonstrated the importance SCC in the genetic evaluation 
of mastitis and recovery with reasonably higher accuracies.  
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