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ABSTRACT: Spatial modelling is recognized as an 
important factor for assessment of breeding values in plant 
trials. 841 Scots pines were analyzed using version 2.0 of 
the hglm package. Both random additive genetic effects 
and spatial effects were included in the model. The 
covariance structures for the genetic and spatial effects 
were given by the additive relationship matrix and a 
conditional autoregressive (CAR) model, respectively. The 
genetic variance decreased by 24% when the spatial effects 
were included, which confirms the importance of including 
spatial effects in plant trials. The possibility to fit CAR 
models in the hglm package is expected to facilitate spatial 
modelling in genetic studies including animal breeding 
applications. 
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INTRODUCTION 
Spatial modelling has been recognized as an 

important factor to consider in genetic plant trials 
(Dutkowski et al. 2002, Zas 2008) but the available 
software to fit both spatial and genetic effects is limited. 
ASReml (Gilmour et al. 2006) allows modelling when the 
data has been collected in a regular spatial matrix structure. 
There are also Bayesian methods such as WinBUGS, which 
uses Gibbs sampler, and INLA (Rue et al. 2009) which is a 
deterministic algorithm combining Laplace approximation 
and numerical integration for a limited set of models. INLA 
has recently also been developed to include modelling of 
additive genetic effects (Steinsland & Jensen 2010, Holand 
et al. 2013). A reasonably fast and non-Bayesian software 
on CRAN for fitting both genetic and spatial effects, where 
the spatial points do not have to be regular, seems to be 
missing though. 

We have recently developed the hglm package 
(Rönnegård et al. 2010) in R available on CRAN for spatial 
modelling and where the random effects can follow several 
different distributions. The aim of this paper is to 
investigate, using the hglm package, the importance of 
including spatial effects in heritability estimation for a 
Swedish tree breeding trial data set.   

 
MATERIALS AND METHODS 

Data. 841 individuals in a Scots pine progeny 
study conducted in northern Sweden were analyzed and 
collected by The Forestry Research Institute of Sweden, 
SkogForsk. Tree height was measured on the 562 trees 
surviving until 26 years of age (Figure 1). The plants were 
placed in 8.8 × 22 m blocks each having 40 seedlings on a 
2.2 × 2.2 m grid. Our study includes the blocks in the north-
western part of the study area. Parental plants were crossed 
following a partial diallel design of 52 parent trees, which 

were assumed unrelated and the offspring were placed on 
the grids unrestricted randomly. See Waldmann and 
Ericsson (2006) for a detailed description of the data set. A 
spatial-genetic model was fitted by Finley et al. (2009) 
using an MCMC method. 
 

Model. The fitted linear mixed model with tree 
height, y, as outcome was  

eWsZay +++= µ  (1) 
where µ   is an intercept term, Z and W are incidence 
matrices connecting the individual random effects with the 
observed phenotypes, a is a normal distributed additive 
genetic effect with (co)variance matrix 2

aAσ with A being 
the additive relationship matrix, s is a random spatial effect 
from a normal distribution described below, and e is the 
residual effect e~N(0, 2

eσ ). 
The random spatial effects follow a conditional 

autoregressive (CAR) model. The (co)variance matrix for 
the spatial effect s is Σ  and its inverse is given by 

 )(11 DI ρτ −Σ =
−    (2) 

where τ is a spatial variance parameter, ρ is a spatial 
correlation parameter, I  is the identity matrix and D is a 
neighbourhood matrix (same size as the matrix A) having 
elements 0’s and 1s indicating which seedlings are standing 
next to each other. From version 2.0 of the hglm package 
this distribution has been implemented and is specified as 
rand.family=CAR(D=nbr) where nbr is the neighbourhood 
matrix given by the user. The model is fitted in a 
computationally fast way by using an eigen decomposition 
of D and adding an additional hierarchy in the hierarchical 
generalized linear model approach (Lee & Nelder 1996, 
Rönnegård et al. 2010, Lee & Rönnegård 2013). 

 
RESULTS AND DISCUSSION 

The estimated variance component without spatial 
effects included in the model were 3.53ˆ 2 =aσ and 

6.113ˆ 2 =eσ giving a heritability of 32.02 =h .  When 
model (1) was used, ie with spatial effects included, the 
estimated variance components decreased to 43.40ˆ 2 =aσ  

and 4.75ˆ 2 =eσ . The estimated spatial effect variance and 

correlation parameters were 3.21ˆ =τ and 126.0ˆ =ρ , 
respectively.  Hence, the spatial effects explained a large 
portion of the total variance and influenced the genetic 
variance dramatically. Both spatial and genetic random 
effects were computed for all trees including those without 
observed height (Figure 2). 



These results confirm the importance of including 
spatial effects in plant trials. The implementation of spatial 
modelling in the hglm package simplifies the practical 
application of spatial modelling. Note that the matrix D in 
(2) could be defined using distances between points rather 
than neighbouring areas, which facilitates modelling of 
irregular spatial points as for instance farms in animal 
breeding.  

Herd effects are commonly modelled as fixed 
effects in animal models. For small and unbalanced herd 
sizes the use of random herd effects are recommended 
(Ugarte et al. 1992, Oikawa & Sato 1997). However, so far 
spatial information has not been used to fit random herd 
effects as far as we know. It is reasonable to expect that 
spatial modelling would improve model fit for animal 
models applied on agricultural systems where the number 
of animals per farm is small (eg in developing countries). 

There are alternatives to the hglm package that can 
fit both spatial and genetic effects. ASReml has been used 
in several plant studies (Dutkowski et al. 2002, Piepho et al. 
2008, Zas 2008) but is limited to regularly structured spatial 
points. WinBUGS and other MCMC methods (Finley et al. 
2009) can fit more general spatial models but is notoriously 
slow and convergence is difficult to assess. A more exciting 
alternative is INLA (Rue et al. 2009) which is less flexible 
than WinBUGS but combines sparse matrix techniques 
(similar to those in ASReml) with Laplace approximation 
resulting in a fast and accurate method producing posterior 
likelihoods for the model parameters. 

A problem not considered in the present study (nor 
in Finley et al. 2009) is whether the phenotypes are missing 
at random. This is a topic for the future and has, to our 
knowledge, rarely been dealt with in animal breeding 
applications. Furthermore, spatial modeling could 
potentially also include GxE interactions, which would be 
an additional development to the analysis. 

Apart from spatial modelling, several other new 
options are also available from version 2.0 of the hglm 

package. Model selection tools using likelihood ratio tests 
and AIC are available. The user can specify several random 
effects from different distributions, and it is also possible to 
add linear predictors for the random effect variance 
components. 

 
CONCLUSION 

Using version 2.0 of the hglm package in R, the importance 
of including spatial effects in tree trials for selective 
breeding has been confirmed. This version of the hglm 
package is a substantial development especially for spatial 
modelling. 
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Figure 1: Location of each tree and their height given in 
grey scale. Darkness increases with height and white 
indicates missing phenotype 

 
Figure 2: Estimated spatial and genetic random effects for 
each tree. Darkness increases with higher values. 
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