Dear Reader,

After almost twelve years as Head of Department, it’s now time to hand over the reins to Hans Petersson, who was appointed as the new Head of Department from July 1, 2019. It has been a great privilege and an absolute honor to serve you all and I have really enjoyed working with all of you. Eventually everything comes to an end and after four mandate periods I’m now looking forward to do more research and teaching as well as a little bit of environmental monitoring. However, I will not leave the Head of Department duties completely, but will now take on the role as Deputy Head to, hopefully, facilitate a smooth change. I wish Hans all the best as the new Head of Department!

As new Head of Department, I would like to take the opportunity to thank Johan for his great efforts in building up an efficient academic organization. He has meant a great deal to the Department and I hope that the employees are tolerant of the fact that it takes a long time to become reasonably as professional and well-liked Head of Department as my predecessor. I wish Johan all the best in his continued career at the Department!

This annual report is divided into the main fields of activities of the Department: Undergraduate, Master’s and Doctoral studies, research within five subject areas as well as five environmental monitoring and assessment programs. Also included in this report are the schematic view of the Department’s organization, facts and figures and at the end a compilation of names of the field staff.

A lot has happened during the past year and we have in the following selected some important events. First of all, the Mistra Digital Forest research program started in early 2019. The program focuses on digitalization of the forestry sector to integrate the entire value chain. The approach is foreseen to give a positive environmental impact on society and on Swedish competitiveness. It will also greatly contribute to Sweden’s conversion to a circular bioeconomy and to climate change mitigation. In May, we celebrated a century of a successful Norwegian National Forest Inventory. More than 200 researchers from 30 countries celebrated on site at Sundvolden Hotel outside Oslo, and a large number of participants were also active in the associated workshop. Also, in May, Karin Öhman, Professor in Forest Planning, gave an exciting and inspiring installation lecture. In the autumn, many researchers and doctoral students from the Department participated in the IUFRO’s World Congress in Brazil. The Vice-Chancellor visited the Department during the autumn and we hope that she was inspired by our activities and satisfied with her visit.

Finally, the BuSK (NPA) project was the winner of the Artic award in the category “sustainable use of resources” – a project run by Gun Lidestav, Per Sandström and Stefan Sandström. Congratulations!

All of the achievements of the Department are, of course, based on a combination of individual and team efforts, contributions that all definitely deserve to be mentioned. This is unfortunately an impossible task. Nevertheless, we would like to highlight a few important events with respect to the staff during 2019:

- Osmo Mattila and Langning Huo were employed as Postdoctoral Researchers
- Mattias Danielsson and Patrik Ulvdal were employed as Doctoral Students
- Emma Heinerud and Johanna Lindström were employed as Auxiliary Research Assistants
- Marcus Hedblom earned the competence of Associate Professor in Biology with focus on Landscape Studies
- Anton Graiström earned the competence of Associate Professor in Mathematical Statistics with focus on Forest Inventory and Sampling
- Henrik Persson earned the competence of Associate Professor in Technology with focus on Forest Remote Sensing
- Rickard Westerlund was employed as System Developer
- Jeanette Eggers and Inka Bohlin were employed as Researchers
- Hilda Mikielsson and Anton Larson were employed as Environmental Monitoring Analysts
- Hans Petersson was appointed as Head of Department
- Johan Fransson was appointed as Deputy Head of Department
- Dianne Staal Wästerlund was appointed as Vice Head of Local Collaboration
- Oskar Thuren was employed as Economy Officer and Johanna Nilsson was employed as Human Resources Administrator
- Jonas Bohlin was appointed as Head of the Division of Forest Remote Sensing
- Sören Wulff was appointed as Head of the Division of Forest Resource Data
- Mathias Kristoferson was employed as Research Assistant
- Mattias Danielsson, Mikael Herz, Maria Spencer and Mattias Nyström left for other duties
- Henrik Feychting and Erik Wihelmsson retired after a long, deserving and loyal service

We hope you will enjoy reading this annual report and do not hesitate to contact us if you would like to find out more about the activities touched upon here. We would be more than pleased to share our knowledge and experiences with you!

Yours sincerely,

Johan Fransson
Head of Department

Hans Petersson
Head of Department
2019-07-01 – 2022-06-30
Organization
Schematic View of the Department

Steering Committee Staff:
Pär Andersson
Jonas Bohlin
Pernilla Christensen
Magnus Ekström
Ola Eriksson
Johan Fransson
Jonas Fridman
Ivan Huuva
Mats Höglström
Gun Lidestav
Torgny Lind
Per Nilsson
Håkan Olson
Hans Petersson
Sören Wulff
Dianne Staal Wästerlund
Karin Öhman

Administrative and Economy Staff:
Head of Administration
Pär Andersson
Economy Officers
Ylva Jonsson
Maria Spencer
Oskar Thurén
Administrators
Veronica Bredberg
Nanna Hjertkvist
Johanna Nilsson
Sofia Sjögren

Figure:
Kenneth Olofsson and Emma Sandström, SLU.
Facts and Figures

Revenues

<table>
<thead>
<tr>
<th>Revenues (1000 SEK)</th>
<th>Undergraduate and Master's Studies</th>
<th>Research and Doctoral Studies</th>
<th>Environmental Monitoring and Assessment</th>
<th>Support Function</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government grants</td>
<td>4 197</td>
<td>19 419</td>
<td>38 255</td>
<td>0</td>
<td>61 871</td>
</tr>
<tr>
<td>External contracts</td>
<td>260</td>
<td>5 868</td>
<td>32 273</td>
<td>195</td>
<td>38 596</td>
</tr>
<tr>
<td>External grants</td>
<td>38</td>
<td>19 794</td>
<td>7 167</td>
<td>208</td>
<td>27 207</td>
</tr>
<tr>
<td>Other revenues</td>
<td>0</td>
<td>1 169</td>
<td>1 179</td>
<td>0</td>
<td>2 348</td>
</tr>
<tr>
<td>Total</td>
<td>4 495</td>
<td>46 250</td>
<td>78 874</td>
<td>403</td>
<td>130 022</td>
</tr>
</tbody>
</table>

- Government grants: 21%
- External contracts: 48%
- External grants: 30%
- Other revenues: 2%

Costs

<table>
<thead>
<tr>
<th>Costs (1000 SEK)</th>
<th>Undergraduate and Master's Studies</th>
<th>Research and Doctoral Studies</th>
<th>Environmental Monitoring and Assessment</th>
<th>Support Function</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff</td>
<td>2 524</td>
<td>25 659</td>
<td>47 676</td>
<td>8 065</td>
<td>83 924</td>
</tr>
<tr>
<td>Premises</td>
<td>440</td>
<td>2 366</td>
<td>2 445</td>
<td>1 024</td>
<td>6 275</td>
</tr>
<tr>
<td>Other operative expenses</td>
<td>77</td>
<td>4 589</td>
<td>13 594</td>
<td>1 924</td>
<td>20 184</td>
</tr>
<tr>
<td>Depreciation</td>
<td>93</td>
<td>358</td>
<td>169</td>
<td>30</td>
<td>650</td>
</tr>
<tr>
<td>Overheads</td>
<td>1 767</td>
<td>9 738</td>
<td>15 777</td>
<td>-10 640</td>
<td>16 642</td>
</tr>
<tr>
<td>Total</td>
<td>4 901</td>
<td>42 710</td>
<td>79 661</td>
<td>403</td>
<td>127 675</td>
</tr>
</tbody>
</table>

- Undergraduate and Master's Studies: 62%
- Research and Doctoral Studies: 33%
- Environmental Monitoring and Assessment: 4%
External Contracts and Grants

<table>
<thead>
<tr>
<th>Financier</th>
<th>Revenues (million SEK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swedish Environmental Protection Agency</td>
<td>26.6</td>
</tr>
<tr>
<td>Formas</td>
<td>4.1</td>
</tr>
<tr>
<td>Swedish Board of Agriculture</td>
<td>2.8</td>
</tr>
<tr>
<td>Swedish National Space Agency</td>
<td>1.9</td>
</tr>
<tr>
<td>Hildur and Sven Wingquist's Foundation</td>
<td>1.6</td>
</tr>
<tr>
<td>EU</td>
<td>1.3</td>
</tr>
<tr>
<td>The Royal Swedish Academy of Agriculture and Forestry</td>
<td>1.3</td>
</tr>
<tr>
<td>The Swedish Forest Society</td>
<td>1.2</td>
</tr>
<tr>
<td>Ljungberg's Foundation</td>
<td>1.1</td>
</tr>
<tr>
<td>Boliden Mineral AB</td>
<td>0.9</td>
</tr>
<tr>
<td>Albania</td>
<td>0.9</td>
</tr>
<tr>
<td>SCA</td>
<td>0.9</td>
</tr>
<tr>
<td>Vinnova</td>
<td>0.9</td>
</tr>
<tr>
<td>USDA</td>
<td>0.9</td>
</tr>
<tr>
<td>Bo Rydin Foundation for Scientific Research</td>
<td>0.9</td>
</tr>
<tr>
<td>The AForsk Foundation</td>
<td>0.9</td>
</tr>
<tr>
<td>Kempe Foundations</td>
<td>0.8</td>
</tr>
<tr>
<td>Swedish Forest Agency</td>
<td>0.7</td>
</tr>
<tr>
<td>Saami Parliament</td>
<td>0.7</td>
</tr>
<tr>
<td>Food and Agriculture Organization of the United Nations (FAO)</td>
<td>0.6</td>
</tr>
<tr>
<td>County Administrative Boards</td>
<td>0.6</td>
</tr>
<tr>
<td>Swedish Energy Agency</td>
<td>0.4</td>
</tr>
<tr>
<td>Forestry Research Institute of Sweden</td>
<td>0.4</td>
</tr>
<tr>
<td>Sveaskog</td>
<td>0.3</td>
</tr>
<tr>
<td>Bergvik Skog</td>
<td>0.3</td>
</tr>
<tr>
<td>Holmen Skog</td>
<td>0.2</td>
</tr>
<tr>
<td>Carl Trygger's Foundation</td>
<td>0.2</td>
</tr>
<tr>
<td>Northern Research Institute (NORUT)</td>
<td>0.2</td>
</tr>
<tr>
<td>Swedish Forest-Owner Plans AB</td>
<td>0.2</td>
</tr>
<tr>
<td>Skogstekningsa klustret</td>
<td>0.2</td>
</tr>
<tr>
<td>RICE ETC AB</td>
<td>0.2</td>
</tr>
<tr>
<td>Brattås Foundation</td>
<td>0.2</td>
</tr>
<tr>
<td>Önnesjö Foundation</td>
<td>0.1</td>
</tr>
<tr>
<td>Sodra's Research Foundation</td>
<td>0.1</td>
</tr>
<tr>
<td>The National Property Board of Sweden</td>
<td>0.1</td>
</tr>
<tr>
<td>The Church of Sweden</td>
<td>0.1</td>
</tr>
<tr>
<td>Others</td>
<td>11.0</td>
</tr>
<tr>
<td>Total</td>
<td>65.8</td>
</tr>
</tbody>
</table>

Personnel Categories

<table>
<thead>
<tr>
<th>Staff</th>
<th>Number of Work-Years*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professors</td>
<td>2.8</td>
</tr>
<tr>
<td>Senior lecturers</td>
<td>1.9</td>
</tr>
<tr>
<td>Associate senior lecturers</td>
<td>3.9</td>
</tr>
<tr>
<td>Researchers</td>
<td>21.0</td>
</tr>
<tr>
<td>Postdoctoral researchers</td>
<td>1.3</td>
</tr>
<tr>
<td>Doctoral students</td>
<td>7.6</td>
</tr>
<tr>
<td>Other teachers</td>
<td>1.6</td>
</tr>
<tr>
<td>Administrative staff</td>
<td>6.5</td>
</tr>
<tr>
<td>Technical staff</td>
<td>36.3</td>
</tr>
<tr>
<td>Technical staff (field)</td>
<td>32.3</td>
</tr>
<tr>
<td>Total</td>
<td>115.2</td>
</tr>
</tbody>
</table>

*These figures show the number of work-years at the Department. It's not a true reflection of the number of employees.

Table: Veronika Bredberg, Johanna Nilsson and Ylva Jonsson, SLU.
Undergraduate and Master’s Studies

The Department is a major contributor to SLU’s Master of Forestry Program (Jägmästarprogrammet). Our course selection amounts to about 40 ECTS credits at Undergraduate level and 45 ECTS credits at Master’s level. The courses are given in the following five subjects: Remote Sensing and Geographic Information Technology (GIT), Forest Inventory, Forest Planning, Mathematical Statistics and Organization and Leadership. The individual courses for each subject are shown in the table below, divided into Undergraduate and Master’s level.

Master’s Theses

Remote Sensing

Forest Planning

Forest Inventory
- Ramberg, Åsa, 2019, Pine production comparison: Production potential of Loblolly pine (*Pinus taeda*) and Slash pine (*Pinus elliottii*) in the southeastern USA in relation to initial density and forest management. Supervisor: Torgny Lind.

Courses

<table>
<thead>
<tr>
<th>Subject</th>
<th>Undergraduate Level (years 1-3)</th>
<th>Master’s Level (years 4-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40-80 students per course</td>
<td>10-60 students per course</td>
</tr>
<tr>
<td>Remote Sensing and GIT, Forest Inventory and Mathematical Statistics</td>
<td>Basic GIT, 3 ECTS</td>
<td>Advanced GIT, 7.5 ECTS</td>
</tr>
<tr>
<td></td>
<td>Introduction to Tree and Stand Measurement, 1 ECTS</td>
<td>Remote Sensing and Forest Inventory, 15 ECTS</td>
</tr>
<tr>
<td></td>
<td>Measurement of Site Index, 1 ECTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistics and Forest Inventory, 15 ECTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laser Scanning and Digital Photogrammetry in Forestry, 7.5 ECTS (given outside the Master’s program)</td>
<td></td>
</tr>
<tr>
<td>Forest Planning</td>
<td>Forest Management Planning, 4 ECTS</td>
<td>Forest Sustainability Analysis, 7.5 ECTS</td>
</tr>
<tr>
<td></td>
<td>Introduction to Forest Planning, 3.5 ECTS</td>
<td></td>
</tr>
<tr>
<td>Organization and Leadership</td>
<td>Gender competence for the forestry sector, 7.5 ECTS</td>
<td>The Forestry from Organizational Theory Related Perspective, 15 ECTS</td>
</tr>
<tr>
<td></td>
<td>Individual and Group Leadership, 0.3 ECTS</td>
<td></td>
</tr>
</tbody>
</table>
Doctoral Studies

Through course work, seminars and participation in focused research projects, the doctoral program trains students in how to develop and address questions within the research subjects of Forest Management and Products, Technology, Mathematical Statistics and Biology. Within these subjects the students are supported by a team of experienced supervisors and a network of national and international expertise. The Department additionally offers an unique experience of collaboration with environmental analysts and specialists involved in two major national monitoring programs, i.e. the Swedish National Forest Inventory and the National Inventory of Landscapes in Sweden.

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Credits</th>
<th>Participants</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics I: Basic Statistics</td>
<td>4.0 ECTS</td>
<td>9</td>
<td>Magnus Ekström</td>
</tr>
<tr>
<td>Statistics III: Regression Analysis</td>
<td>4.0 ECTS</td>
<td>6</td>
<td>Wilmer Prentius</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Magnus Ekström</td>
</tr>
<tr>
<td>Multivariate Statistics</td>
<td>4.0 ECTS</td>
<td>8</td>
<td>Magnus Ekström</td>
</tr>
<tr>
<td>Introduction to Multi-Criteria Decision Analysis</td>
<td>4.5 ECTS</td>
<td>9</td>
<td>Eva-Maria Nordström</td>
</tr>
</tbody>
</table>
Forest Remote Sensing

Within Forest remote sensing, we work with research, education and development of remote sensing of forests and other terrestrial vegetation. We also help with the processing of remote sensing data within the framework of SLU’s environmental monitoring and assessment. We usually utilise data from optical, laser or radar sensors. Traditionally, sensor platforms have included satellites, aircraft and small, unmanned aircraft vehicles (so-called UAVs or drones). Increasingly, we also use sensors placed on the ground or in vehicles, which depict trees from the side.

Publications

Scientific Articles

Reports

Postdoctoral Researcher
Langning Huo

Doctoral Students
Arvid Axelson
Ivan Huuva
Nils Lindgren
André Wastlund
Forest Inventory and Sampling

Forest inventory and sampling comprises general sampling theory, field-based forest and landscape inventory, and in relation to these activities modelling and development of inventory systems that utilize multiple data sources. Forest inventory currently includes a number of aspects relevant to sustainable forestry. In addition to data on trees and stands, information on biodiversity and greenhouse gas balances are included. The subject area contributes knowledge to a large number of applications within applied forestry and environmental monitoring and assessment.

Publications

Scientific Articles

Reports

Subject Area Manager
Hans Peterson

Staff
Henrik Feyckting
Anton Graafström
Torgny Lind
Svetlana Saarela

Doctoral Students
Alex Appiah Mensah
Wilmer Prentiss
Xin Zhao

The publication list includes articles published with authors and co-authors from the Swedish National Forest Inventory.
Forest Planning

Forest planning shall provide knowledge and analysis tools that can contribute to the sustainable use of the forest resource with regard to economic, ecological and social values. Forest planning deals with planning issues from both a company perspective, and from a stakeholder or society perspective. The focus of research on the forest company deals basically with quantitative methods to translate owners’ goals into a long-term forest plan. The society perspective is represented by providing long-term analysis on national and regional level, and on research on the forest landscape as a socio-ecological unit, where various stakeholders converge and work together to influence the landscape’s development.

Publications

Scientific Articles

- Sotirop, M.; Saltnäs, O. & Eriksson, O. (2019). Forest owner behavioral models, policy changes, and forest management. An agent-based framework for studying the provision of forest ecosystem goods and services at the landscape level. Forest Policy and Economics. 103:79-89.

Mathematical Statistics Applied to Forest Sciences

The application of mathematical and statistical methods in forest sciences is challenging due to the great amount of variations present in the nature, with complex dynamics that involve variations in both space and time, and a wide range of mathematical statistical methods are studied, developed, and applied, for collecting, analyzing, interpreting and presenting empirical data. Such methods make it possible to draw conclusions based on empirical data, and can be used for description, decision-making and prediction within the forest sciences.

Publications

Scientific Articles

Landscape Studies

Through an interdisciplinary approach, Landscape Studies conducts research on the utilization of landscapes, its multiple resources and users. Thereby we contribute to an increased understanding of the socio-ecological processes and their change in time and space. Of special interest are the connections between natural resource use, stewardship, ecosystem production and community development processes. Our work builds upon capacities within environmental monitoring, forest impact assessment, work science including gender studies, policy and rural development studies.

Scientific Articles

Reports

Environmental Monitoring and Assessment

SLU is unique among Swedish universities with its strong focus on environmental monitoring and assessments (EMA). Within SLU, the Department is also quite unique with EMA as the dominating activity (roughly 60% of the budget). For a large set of terrestrial variables, EMA is the long-term monitoring and assessment of stocks and changes in stocks. EMA includes data capture, analysis and reporting. The inventories in the field, using remote sensing or by combining these two, are performed using area-based sampling designs adapted mainly to regional or larger scales. The idea is to carefully measure model variables on the sample units, and thus most of the uncertainty should arise from the fact that only a sample and not the entire population is measured. The uncertainty of estimates can be controlled by an efficient design and a large sample, and it is possible to estimate the accuracy of the estimates. EMA is an efficient way to monitor “how much” without disturbing the population, while an experimental design focuses on explaining “why” in a well defined manipulated area. Projections and scenarios about the future of terrestrial variables, often based on data from the monitoring programs, are also regarded as EMA.

Swedish National Forest Inventory

SLU is the responsible authority for the national official statistical area Forest Status and Change. Statistical products consist of area conditions, growing stock and tree biomass, annual growth, vegetation and habitat conditions and forest damage. The Swedish National Forest Inventory (NFI) operates within the Department to fulfill SLU’s statistical responsibility. Through an annual field survey of sample plots spread across the entire country, data are collected for compilation and presentation of official statistics. The results are published annually in the publication Skogsdata, which can be downloaded in pdf-format from our website, where the statistics also can be downloaded in multiple formats including APIs.
National Inventory of Landscapes in Sweden

The National Inventory of Landscapes in Sweden (NILS), funded by the Swedish Environmental Protection Agency, aims to monitor the status and trends in biodiversity and landscape structures in all types of terrestrial environments. Since 2019 focus has been on the mountain area. Field data are collected within 1 × 1 km squares using circular sample plots and line-intersect sampling.

Terrestrial Habitat Monitoring

The EU Habitats Directive can be seen as the foundation of the European Union’s nature conservation policy. The aim of the directive is to protect habitats and species of European community interest and it states that every member state shall undertake surveillance of the conservation status of habitats and species. As a response, the program Terrestrial Habitat Monitoring (THUF) was initiated in 2006 with the aim of developing efficient methods for the monitoring and assessment of terrestrial habitats of high conservation status as well as for organizing necessary data collection, analysis and reporting.

Butterfly and Bumblebee Inventory

The Butterfly and Bumblebee Inventory (FHIN) is part of a nationwide long-term monitoring scheme of semi-natural grasslands assigned by the Swedish Board of Agriculture. The objective is to detect and report changes in biodiversity quality. In a sample of nearly 700 meadows and pastures we record species abundance and descriptive parameters by standardized transect walks.

Forest Sustainability Analysis

The program Forest Sustainability Analysis (SHa) works with qualitative and quantitative analyses of the potential of forest ecosystems to provide various forms of ecosystem services in the long-term. Through the program, policy-makers, decision-makers and planners within a range of sectors in society, e.g. forestry, environment and energy, shall have access to expertise, analytical tools and support for decisions on issues related to forest development. The Heureka decision support system makes up a central tool in most of the SHa analyses.
Field Staff
Every year the Department organizes and implements extensive inventories of forests and landscapes in Sweden. To carry out this work a number of field workers are employed.

Swedish National Forest Inventory

- Amanda Tas
- Anna Sjövall
- Anton Andersson
- Anton Nilsson
- Axel Ljudén
- Bernt Svensson
- Björn Sjöberg
- Bo Hansson
- Bo Karlsson
- Caja Söder
- Charlotte Olofsson
- Christer Moreira Boman
- Christofer Engberg
- Daniel Persson
- David Falk
- Eric Lundqvist
- Erik Lundmark
- Fanny Nilsson Mäkikaltio
- Fiona Campbell
- Fredrik Johansson
- Gustav Thurell
- Göran Dahlström
- Haidi Andersson
- Hans Davidsson
- Henrik Salo
- Hilda Mikaelsson
- Ingemar Olandersson
- Jakob Joelsson
- Johan Bergstedt
- Johan Gustafsson
- Jonas Vesterlund
- Juha Loenberg
- Lars Bengtsson
- Lars Davidsson
- Leif Andersson
- Lennart Ivarsson
- Linnéa Johansson
- Magnus Lindström
- Manne Stenström
- Marcus Vestlund
- Maria Jägerborg
- Maria Michold
- Martin Eriksson
- Martin Holm
- Mats Jonasson
- Mikael Olsson
- Mikael Rasmusson
- Nils Karinen
- Ola Borin
- Oscar Walheim
- Otto Larsson
- Petter Larsson
- Rebecka Oscarsson
- Samuel Degertorp
- Sixten Walheim
- Staffan Williamsson
- Stefan Callmer
- Stina Törnkvist
- Svante Knutsen
- Thomas Stillhandske
- Tommy Bohman
- Torben Svensson
- Torbjörn Widell
- Viking Petersson
- Ake Bruhn

National Inventory of Landscapes in Sweden

- Billy Lindblom
- Clara Jonsson
- Ellinor Ramberg
- Emma Enfjäll
- Frida Nettelbladt
- Hampus Jarhede
- Janny Ekestam
- Jonas Sundell Eklund
- Julia Svensson
- Lina Wikander
- Maja Nilsson
- Maja Olsson
- Maria Edstam
- Markus Engvall
- Mattias Talja
- Ofir Svensson
- Oskar Lövbom
- Robin Karlsson
- Sandra Fransson
- Sigrid Nilsson
- Simon Eklundh Odler
- Viktor Bolin
- Viktor Johannessen
- Yvonne Malm

Histtax

- Adam Dahlén
- Emma Heinerud
- Hanna Granberg
- Johanna Lindström
- Sebastian Lindström Väliming
Department of Forest Resource Management

www.slu.se/srh