Utvärdering av Korsnäs AB's försök med gödsling i ungskog

Johan Bergh och Paul Willén

Institutionen för sydsvensk skogsvetenskap
SLU
Box 49
SE-230 53 Alnarp

Telefon: 040-41 50 00
Telefax: 040-46 23 25

ISBN 91-576-6890-6

Arbetsrapport nr 26
Institutionen för sydsvensk skogsvetenskap
Alnarp januari 2006
Utvärdering av Korsnäs AB’s försök med gödsling i ungskog

Johan Bergh och Paul Willén

Arbetsrapport nr 26
Institutionen för sydsvensk skogsvetenskap
Alnarp januari 2006
Förord

Korsnäss AB:s praktiska försök

Inledning

I Sverige har man bedrivit långgående fälsöförsök med gälskog i ungskog av gran sedan 1940-talet. Under senare delen av 60-talet anlades Stråsns-försöket i Dalarna, med syfte att studera hur unga granbeständ reagerade på olika kväve- och fosforförsörjning och vilken effekt andra näringsämnen hade på produktionen. I slutet av 80-talet anlades en ny generation näringsstillförselssöförsök i ung granskog, Flakaliden (Vätternbotten) och Asa (Småland). Syftet med försöken var att försöka förbättra produktionspotentialen för gran under rådande klimatförhållanden. I försöken ingick, förutom näringsstillförsel, även bevattning. Ett nyt kriterium för försöket var att näringsstillför-}

Material och Metoder

Insamling av data och bearbetning

Årsningsbredderna mättes i en Addo års- ringsmäte kopplad till en rader med ett program avsett för detta ändamål. Årsningsbredderna parades ihop med motsvarande träds höjd för de aktuella åren och volymen beräknades för träden ett antal år tidigare. I båda fall var det möjligt att rekonsriona volymutvecklingen till början av 1980-talet.

tes in och volym beräknades vid gödslings- starten, så att den absoluta gödslingseffek- ten kunde räknas ut.

For att få ut den löpande tillväxten för be- ständen togs ett medeldel i klasserna klen, mellan och grov. Träden från pricklistorna har sedan fått samma proportionella till- växt:

I = T/Tmedelträdet

Där I = löpande tillväxt, t = medeldelträdets löpande tillväxt, T = trädets volym, Tmede-

Statistik analys

Beskrivning av försöksområdena

Ackinavallshocken ligger några mil nordväst om Ljusdal 420 m ö h (figur 1). Den undersökta delen av beståndet ligger i huvudsak i en svag sluttning mot norr. Beståndet planterades 1978 efter harvning och hade vid godstångens start 1989 knappt 1300 planter per hektar. Beståndet var för-
lat provytorna i de övre, mellersta och nedre partierna av beståndet. Beståndet göds-
lades under perioden 1986-1988 med sammanlagt 300 k N, 44 k P och 56 k S per hektar.

Högäsen ligger längs med E4 söder om Gävle (figur 1). Beståndet anlades 1964 och hade 2000 stammar per hektar vid för-
söktets anläggande. Det är ett parcellförsök med 4 upprepanel av parceller, där en-
dast upprepning är inlämnat år 2001. I varje upprepning finns 1 parcell med normal
giva, 1 med hög giva samt 1 obehandlad parcell. Parcellernas yta är för var och en
0,16 ha. Gödsling har skett under åren 1985-1989. Normal givan fick de tre första
åren 80-90 kg N per ha och år och medan den högre fick 120-160 kg N per ha och år. De
etterföljande åren minskade givan till 40 respektive 60 kg N per ha och år. Även en
balanserad mängd fosfor (P), kalium (K), magnesium (Mg) och bor tillfördes vid
gödslingsprövningen. Vegetationsperioden långt är ca 170 dagar med en årsemdöde
under vegetationsperioden på ca 400 mm (se bilaga 2, tabell 1).

Kvarnsjön ligger sydväst om Falun och beståndet som är ca 20 hektar anlades
1972. Beståndet ligger i en slutning och därför har vi delat upp de parvisu jämförel-
serna så vi kan redovisa gödslingsseffekten både i den övre delen och den gödslade delen.
Beståndet gödslades under perioden 1985-1989 med 320 kg N, 63 kg P, 143 kg K per hektar, samt med flera andra makro-
oc mikronärsämnen (se bilaga 2, tabell 3).
Kvarnsjöns nedre parti är fuktigare och har rätt starkt marken jämfört med den
övre delen i både den gödslade och den
Liljöningsbo är beläget utmed väg 254 sydväst om Gävle (figur 1). Det är ett par-
cellförsök som ingår i ett större trädöds-
försök, utlagt av Bengt Jonsson år 1956. Parcellernas storlek är 0,14 ha vardera.
Beståndet anlades genom brämmning och sådd av blandför, tall och gran. På hösten
1961 röjdes den del av försöket som utnytt-
jas i det här sammanhanget till ett nytt
grundsstånd. Näringsbevattning med
dropsplanter har utförts under åren 1981-
1990. Bevattningen gick till på så sätt att
slagar var utlagda med 10 meters mellan-
rum och avståndet mellan dropsyror var 1 meter. Mängden vatten som tillfördes
var ca 100 mm per år fördelat på ca 100 dagar. Mängden N som tillförts har varit
kraftigt för de olika åren. Första året var
56 kg/ha sedan ökade den till 148-
237 kg ha och är för de närmaste tre åren.
Därefter minskade givan till 74-100 kg per
ha och år för de resterande åren. Andra
näringsämnen som kalium, fosfor och bor har också tillförts (se bilaga 2, tabell 3).
Under de första åren tillfördes dock inte någon fosfor alls. Nederböden under ve-
etationsperioden är ca 300 mm (se bilaga 2, tabell 1).

Riskan är beläget norr om Längshyttan i
sydöstra Dalarna (figur 1). Beståndet anla-
des 1967 och innehöll vid försöktets start
1700 stammar per hektar. Försöket är ut-
lagad med parvisu jämförelser. Storleken på
de behandlade ytorna är för normal giva ca
10 ha samt för hög giva 10,8 ha. Den obe-
handlande jämförelseytan är 10 ha. Göds-
ling har skett under åren 1985-1989. På
Riskan har man delat upp området i två
olika ytor med normal och hög giva (se bilaga 2, tabell 3). Ytan med normal giva har
tillförts 60-80 kg N per ha och år och ytan med hög giva fick de tre första åren
90-160 kg N per ha och år. De resterande
åren 100 kg N/ha tillförts, men även fosfor, bor, kalium och magnesium. För-
slutningen av det färdiga bevarandet är en
näringsbevattning som är en bit större än
mäningare. Nederbörden på färdiggörande
under vegetationsperioden på medel ca 350 mm (se bilaga 2, tabell 1).

Herråkerådsesten ligger söder om Hofors (se
figur 1). Beståndet anlades 1966 och hade
vid föröveritets början ett stamantal om 2000 stammar per hektar. Vegetationsperiodens
längd är ca 160 dagar med en årsemdöde
på drygt 700 mm per år (se bilaga 2, tabell 1). Försöket är utlagt med parvisu jämfö-
rerelser och har behandlats med en högre
vara under åren 1985-1989 (se bilaga 2, tabell 2).
Herråkerådsesten har man till-
fört 120-160 kg N per ha och år för de
främsta åren, medan de två efterföljande åren har man tillförts 100-180 kg N per ha och år.
Även på Herråkerådsesten har man tillört en
balanserad mängd av makro- och mik-
onärsämnen (se bilaga 2, tabell 3). Storleken på den behandlade ytan är 13,6 ha och den obehandlande jämförelseytan är på
5,0 ha. Herråkerådsesten tycks blyvare bli
grövrad de senaste åren, men vi mätte ändå
i cirkelbyten och försökte bestämma
det utgått trädförändringar i meter
med ledning av svunna. Resulterna har p.g.a.
att detta inte lika hög noggrannhet som de
övriga områdena. Nederböden under ve-
etationsperioden är ca 350 mm. Föreół-
området ligger i en slutning vilket innebär
att det är stora skillnader i bonitet mellan
övre och nedre delen som därför har sepa-
rerats vid uträkningar av volym och rekon-
struktion av den löpande tillväxten.

Resultat
På Ackinvallshockelns, där planarterna var
0,2 meter höga vid gödslingssstarten 1989
(se bilaga 2, tabell 3), var den löpande till-
växten lägre i de bestånd som hade gödsl-
lade jämfört med det bestånd som var
gödslat (figur 2a). Den stående stamvol-
ymen 2001 var nästen dubbelt så hög i det
gödslade beståndet jämfört med de göds-
lade och skallade skillnad med en bety-
signifikant (se bilaga 2, tabell 4). Någon skillnad i produk-
Liljöningsbo ligger nordväst om Edsbyn
(1 figur 1) och planterades 1970. Beståndet i
Liljöningsbo har stort andel mo-mjölla frak-
tioner, där det gödslade delen av beståndet

6
Bunken som är planerat på nedlagd åkermark var 4,0 meter högt vid gödslingsstaren. Bunken visade ingen markant produktionsökning som man brukar se 1-2 år efter första gödsling utan ökar successivt fram till 1990 (figur 2c). Gödslingsseffekten varade fram till 1996. De 310 kg N per hektar som tillfördes sammanlagt under perioden 1985-1989 gav en metertillväxt på ca 20 m³ per hektar, en skillnad som var svagt signifikant (se bilaga 2, tabell 4). Bunkängen, som är beläget intill Bunken och växer på skogsmark, har två olika gödslingsregimer, en lägre giva på sammanlagt 325 kg N per hektar och en högre på 545 kg. Den löpande tillväxten ökade för de gödslade bestånden och gödslingseffekten verkar bestående fram till 2001 (figur 2d). Gödslingen med en lägre giva gav högre produktion jämfört med den högre givan och den ständiga volymen 2001 var 75,9 m³ sk per hektar för gödslet, 113,7 m³ sk för den lägre givan och 97,0 m³ sk för den högre (se bilaga 2, tabell 4). Skillnaderna i ständiga volym mellan de gödslade behandlingarna och det ögdelade beståndet var båda signifikanta, men för den högre givan svagt signifikant.

I Edsken som ligger på mjöllmark var den löpande tillväxten 1-2 m³ sk högre per hektar och år i det gödslade beståndet jämfört med det ögdelade (figur 2e). Skillnaden var störst i slutet på 80-talet några år efter gödslingsstaren 1985. Skillnaden i ständiga volymen 2001 mellan gödslet och ögdelat var ca 30 m³ sk per hektar och svagt signifikant.

I Hemling som ligger betydligt längre norrut än andra lokalerna tredubbla den löpande tillväxten i det gödslade beståndet jämfört med det ögdelade (figur 2f). I och med att beståndet ligger i en tillgänglig särskiljde utsträckningar mellan det övre, mellerrita och nedre partiet. Det var stora skillnader i gödslingsseffekten mellan det övre och nedre partiet jämfört med mellersta partiet, där gödslingsseffekten var minst. I det nedre partiet var skillnaden nästan 100 m³ sk per hektar mellan gödslet och ögdelat, medan skillnaden var 20 m³ sk i det mellersta partiet. Om man summar den ständiga volymen för de olika partierna i Hemling, så stod det ca 100 m³ sk per hektar i det gödslade beståndet medan 40 m³ sk per hektar i det ögdelade (se bilaga 2, tabell 4).

På Herrgårdsstegen hade det ögdelade partiet i den nedre delen nästan lika hög produktion som det gödslade beståndet (figur 2g). Den löpande tillväxten ökade i likhet med Bunken relativt sakt i början men under hela 90-talet har den löpande stamvolymtillväxten varit dubbelt så stor i det gödslade övre partiet jämfört med det ögdelade övre partiet. Skillnadernas mellan gödslet och ögdelat var i det nedre partiet ca 1,7 m³ sk per hektar medan den var ca 0,64 m³ sk per hektar i det övre partiet. Lägger man ihop de ständiga stamvolymerna för det nedre och övre partiet var skillnaderna mellan gödslet och ögdelat starkt signifikant (se bilaga 2, tabell 4).

I Högösen gav den högre givan en markant ökning av den ständiga stamvolymtillväxten medan den lägre givan gav en mer successiv produktionsökning (figur 2h). Gödslingsseffekten på produktionen verkar mer bestående för den högre givan jämfört med den lägre. Den ständiga volymen var 2000 l för den högre givan 144 m³ sk per hektar, 107 m³ sk för den lägre och 82 m³ sk per hektar för gödslet och skillnaderna var signifikanta (se bilaga 2, tabell 4).

Figure 2 a-h. Öppna symboler representerar ögdelade referens medan fyllda symboler är gödslade behandlingar: (a) Acknäsvallshöken där fyllda cirklar representerar gödsling med N+Mg och fyllda fyrkantar N+mikronäringsämnen, (b) Bunkängen, där fyllda cirklar representerar en högre gödslingsgiva och fyllda fyrkantar en lägre, (c) Hemling, där cirklar representerar det nedre partiet, fyrkantar det övre och trianglar det mellersta, (d) Herrgårdsstegen, där cirklar representerar det nedre partiet och trianglar det övre partiet, (e) Högösen, där fyllda fyrkantar representerar en högre gödslingsgiva och romber en lägre gödslingsgiva.
Gödsling utfördes i de flesta fall under perioden 1985-1989. För mer detaljerad information om gödslingen se bilaga 2, tabell 3.

I kontorta bestämt på Högsägen gav gödsling en snabb uppgång av den löpande tillväxten som varade i 5 år och hur sedan dess varit något högre än det ogödslade beståndet (figur 3a). Mertillväxten vid gödsling har varit 23 m²/sk per hektar och skillnaden är signifikant (se bilaga 2, tabell 4). Medeltillväxten per hektar och är under perioden 1985-2001 är för det ogödslade beståndet ca 11 m²/sk, en produktionsutveckling som motsvarar en G32.

I Främlingshem gav gödslingen en effekt på stamvolymproduktionen redan de första åren men lyckats rekonsnstra den löpande tillväxten (figur 3b). Mertillväxten var under drygt 10 år ca 100% högre för det gödslade beståndet jämfört med det ogödslade. Effekten har avtagit under senare delen av 1990-talet, då det gödslade beståndet har kommit i kapp med det gödslade. I absoluta tal har produktionsökningen varit 51,9 m²/sk per hektar (se 2, tabell 4) och skillnaden mellan gödslag och ogödslag är starkt signifikant.

Inga signifikanta skillnader fanns det mellan gödslag och ogödslag och merproduktionen var 18,5 m²/sk per hectar i det gödslade beståndet (se bilaga 2, tabell 4). I Lilöjungsbo var det, i början innan gödsling, stora skillnader i produktionen, där det gödslade beståndet hade mer än dubbelt så hög löpande tillväxt och en ständiga volym på 17,6 m²/sk per hektar jämfört med 5,3 för det gödslade. Gödsling gav en kort varig men markant uppgång av den löpande tillväxten ett par år efter gödslingssstarten och kommer i kapp den löpande tillväxten för det ogödslade beståndet (figur 3d). Efter 1993 har den löpande tillväxten varit ca 2 m²/sk lägre per hektar och är för det gödslade beståndet jämfört med det gödslade. Merproduktionen under perioden 1986-2001 har varit ca 20 m²/sk (se bilaga 2, tabell 4) högre per hektar för det gödslade beståndet med det gödslade.

I Norr Såvajön såg gödslingen en markant uppgång och stor ökning av den löpande tillväxten (figur 3e). Den löpande tillväxten för det gödslade beståndet har periodvis varit 7-8 m²/sk högre per hektar jämfört med det gödslade beståndet. Gödslingseffekten har också hållit sig ända fram till idag, där den löpande tillväxten 2000 var ca 10 m²/sk för det gödslade beståndet och 6 m²/sk för det gödslade. Gödslingen har givit en merproduktion på 66,4 m²/sk per hektar (se bilaga 2, tabell 4) och skillnaden är starkt signifikant.

Figur 3a-f: Öppna symboler representerar gödslag referens medan fyllda symboler är gödslade behandlingar: (a) Högsägen kontorta, (b) Främlingshem, (c) Kvarnsjön där cirklar representerar det nedre partiet och fyrkanter det övre partiet, (d) Lilöjungsbo, (e) Norr Såvajön, (f) Risken övre del där fyllda fyrkanter representerar den högre gödslingsgivern och romber den lägre gödslingsgivern, (g) Risken nedre del där fyllda fyrkanter representerar den högre gödslingsgivern och romber den lägre gödslingsgivern, Gödsling utfördes i de flesta fall under perioden 1985-1989. För mer detaljerad information om gödslingen se bilaga 2, tabell 3.
I Risken ger både den lägre och den högre givna en ökning av den löpande tillväxten i både det nedre och det övre partiet. Där emot kommer den löpande tillväxten för det ögdslande beståndet ikapp de ögdslande bestånden i mitten av 1990-talet (figur 3f).

Under senare delen av 1990-talet har produktionen varit klart lägre i de ögdslande bestånden, särskilt bestämt med den högre givna. Både det övre (figur 3f) och det nedre partiet (figur 3g) uppvisar samma trend och gödslingen gav i Risken ingen merproduktion alls (se bilaga 2, tabell 4).

Diskussion

24 provträd (streckad) jämfört med 12 provträd (höldragen). Förklaringen är enkel i och med att volymfunktionen för 12 provträd underskattar den ständiga produktionen mer ju grönare träden blir. En positiv indikation på att vi har lyckats rekonstruera den löpande tillväxten ganska väl är att vi har fått en gödslingereaktion i de flesta fall och att den kommer vid förväntat tidpunkt.

tillväxten, då försöken avbröts alltför tidigt.

Gödslingen har för vissa år, särskilt i bör-jan, varit lite väl sen v29-v35, vilket motsvarar mitten av juni till slutet av augusti.
Figur 5. Stilande volym för olika behandlingar i Strånen (N1, N2 och N2P2K) jämfört med Norr Sävasjön stor godsetseffekt och Edsken med lägre godsetseffekt.

Gödsling efter det att den ovanjordiska tillväxten har upphört borde minska träden förmåga att ta upp näringen och öka risken för läckage under höst, vinter och vår. Gödsling efter juni månad gör att godsetseffekten blir fördjupad ett år då man gödslar första gången, vilket kan misstänkas i flera av försöken. Om gödsling ska tas upp av årskotten bör godset gödsling ske innan skottskjutning. Skogsförbättringar har funnit i sina förrörsök att godsetstidpunkt har ingen större betydelse vid engångsgödsling och kvävegivor på 150 kg N per hektar eller mer, men vid gödsling varje år och med mindre kvävegivor kan det sannolikt ha betydelse på kort sikt. Några experimentella belägg finns dock inte för detta påstående. På några lokalser har man börjat med en hög kvävegiv på 160-230 kg N per hektar för att sedan gå ner och för de sista två åren ha en giva så låg som 40 kg N per hektar och år. Behovet av näringssammanlagning är något lägre i början och ökar efter ett par år då ökningen av barrmassa och tillväxten skjuter fart. Vid gödsling varje år som i dessa försök skulle man kanske ha startat med 75-100 kg N per hektar och år för att sedan öka till 100-125 kg.

Tillväxtresonspisen har varit relativt långvarig för flera områden. En tänkbar förklaring till detta kan vara att en del av den tid första dagen har tagits upp av träden medan en del har fastlagt i marken. Den mängd som fastläggs i marken skar sannolikt ju mer man tillför, i synnerhet om man tillför näring vid en frittall tillfällen. Den del som har bundits till marken kan senare bli tillgängligt för trädens upptag. Sedan bygger man upp barrmassan med gödsling, vilket skedde under 4-5 år för de flesta försöksområdena. Medellivsåldern på granarna 5-10 år är så lång att godsetseffekten borde vara i minst 5-10 år efter det att gödslingen har upphört. Sedan kan man få en effekt av att de uppgödsade barrårgångarna kan ge ett extra näringstillskott då de dör, faller av och bryts ner i marken. Gödslingen kan även ha gett en mer lång-
siktig upplagring av näringsämnen i marken, där en del av den buntnäringen kan mineraliseras och bli tillgängliga för träden igen.

De godsetse områdena i Herrgården och Kvarnsjön är belägna i en sluttning och det finns anledning att tro att det finns stora skillnader i tillväxt och godsetseffekten mellan den övre och nedre delen av områdena. Godsetseffekten i det övre partiet av Herrgården var stor där den löpande tillväxten har varit dubbelt så hög. Det är viktigt att notera att godsetseffekten i det övre partiet håller i sig ån idag (se figur 2g). I det nedre partiet av Herrgården har det godsetse området nästan lika hög tillväxt som det godsetslade. Kvarnsjön visar upp samma mönster i det nedre partiet där det godsetse området har nästan samma tillväxtvektor som det godsetslade (figur 3e). Om man studerar båda områdena noggrant med avseende på topografi och kontrolltypomnas belägenhet, så kan man misstänka att det har läckt näringsämnen från de godsetslade stråken och transporterats till nedre partierna. Detta är särskilt tydligt för Kvarnsjön där kontrollmarken i nedre parti ligger i en smal kil mellan två godsetljusstråk. En yttreindikation på detta är att tillväxten i det godsetslade nedre partiet i Kvarnsjön följer till en början en G24:s tillväxt förlopp men efter några år efter godsetsestarten avviker tillväxtkurvan kraftigt uppåt (figur 6) och tillväxten i det nedre partiet motsvarar ungefär en G32. I Herrgården har det godsetslade partiet i den nedre delen en högre ursprungsbonn som den var förväxande fram till 1987 (figur 2g), om man jämför med de andra områdena. Detta kan också ha haft en inverkan på att skillnaden mellan gödslet och godset har varit liten. Det som är svårt att förklara är varför godsetseffekten i det övre partiet av Kvarnsjön har varit oberoende av godset och godsetslade marken. Efter godsetsestarten 1965 har de godsetse områdena hög tillväxt och godsetseffekten har varit hög. I Bunken, Bunkängen och Edsken är godsetseffekten förhållandevis liten. De ursprungliga godsetseffekten i Bunken (G29) var hög för att vara i Givlerakten. Mertillväxten vid godset blev liten eftersom näringsförhållanden redan var goda. Beständet är planterat på nedlagd
jordbruksmark och marken är en brunjord med stor andel lera. Andelen lera kan också påverka vattentillgången för granbe-
ståndet, då lera kan hålla markvattnet så pass hårt genom kapillärkraft, att det inte är tillgängligt för uppgå i trädens rötter.
Beståndets behov av vatten ökar med ökad barrmassa och effekten av vatten på barr-
massans utveckling och produktionen bör-
de bli större då beståndet börjar sluta sig.
Klängen ligger på sandmark, som är
genomsläpt för både vatten och växt-
näring. En del av den tillförlitliga näringen
kan ha perkoleration genom markprofilen in-
nan den kunde tas upp av rötterna. Bun-
kängen har också ett variierande jorddjup,
vilket innebär att en stor andel av marken
har ett grunt jorddjup, något som inverkar
negativt på rötternas möjlighet att bredda sig
till och ta upp vatten och näring. Någon
naturlig förklaring till att den högre givan
gav sammare mättviltväxt än den lägre har vi
inte. Möjligt kan den höga initiala dosen
för den höga givan på 230 kg N ha gett
upphov till näringsbalanser, där merpar-
ten av tillförlitlig kallom har lätet ut medan
kvävehalten i barren varit hög. Risken
ligger på njälmark och kan inverka på
vattenförhållandena i beståndet, då mjöla
har stor förmåga att hålla vatten. Fuktit
mär kan ibland ge syrefattig miljö i roten-
nen och inverka negativt på rötternas fun-
ton och upptag av vatten och näring.
Eventuellt kan jordtexturen ha påverkat
godståffseffekten. Njälmarkaren kan också
ge upphov till den tillsamman-
svenska tillväxtstarten på vatten.

Risken och Ljöljungso är de områden där
godståffseffekten i det närmaste har varit
obefintlig. I Risken ser man en effekt av
godstången särskilt i den övre delen som
håller i sig i åtta år (figur 36c). Under
de senaste tre år har referensätten gått om de
godståg behandlingarna i den övre delen
derisken. I det bestånd som har fått den
högre givan har den löpande tillväxten
avtagit markant sedan 1992 (figur 36f-g) på
et ett oförklarligt sätt. I den nedre delen av
risken är godståffseffekten mindre jämn-
fört med övre och referens har en löpand-
de tillväxt som är mer än 4 m³ högre per hektar
år än den godståg. Vad man
yttigt kan se är att referensytorna har varit
återväxande innan dess att godståget bör-
jar och sannolikt kan bonitetsskillnader
här inverkat på resultatet. Skillnader i ur-
sprunghet produktionsförmåga mellan de
godståg och godståg partierna är ännu
tydligare i Ljöljungso, där den stående
volymen vid godstågstartssten för de
godståglade yttorna var mer än tre gånger så
stor. I figur 3d kan man se att de godstågs
bestånden kommer ikapp de godståglade och
går till och med om de godståglade men fal-
ser sedan tillbaka nästan omedelbart efter
et att godståget har upphört. Något som
kanske kan inverka på att tillväxtnivån var
lågre i de godstågade beståndet och att
godstågseffekten var så kortvarig är att
jorddjupet var variierande/grund i det gö-
slade beståndet i Ljöljungso.

Vid godstångstartssten i Aickvallschoklen
och Björnerget var plantorna inte mer än
0,2 respektive 0,6 meter höga. I Ackvall-
shocklen har de godståglade beståndet
bestått signifikant bättre än de godståg.
Vid godstång av plantokg är det en stor
risk för att undervegetation konkurrerar
mellan plantorna och kan i många fall ge
upphov till att godståffseffekten uteblir
eller till och med orsaka tillväxtförluster.
Plantorna har inte heller hunnit bygga ut
nitt rotsystem och täcker endast en liten del
växthusarealet. Oftast bör godstång
in uppsok kombineras med herbicyclerb
handling för att förhindra vegetationskonkur-
rens. I Björnerget var plantorna något
högre och i det godståglade beståndet verkar
plantorna klarat av konkurrensen bättre.

Norr Såvåsjö, Högsånes, Helming och
Främlingsham är de förövare som
hårt i Falling området,
främst den godstågseffekten.
Dessa
bestånd ställer på vanlig svensk skogsmark
med sandig-morit mor, mäktigt jorddjup,
meddug bonitet för regionen, frisk eller
aniuvariöre mark. I Norr Såvåsjö har den
löpande tillväxten under de senaste 15 åren

större näringsläckage än om man sprider
risk, är förstora som grundläggande
sannolikt större om man tillför nåring på en
del av beståndssären. Genom att
godstågen gav upphov till sannolikt och
mer fullsatta bestånd har kronorna blivit
upphämnade i de godståg behandlingarna
och barrmängden har efter man sluttat att
godstå godstångminskning för de godståg
handlingarna. Detta är sannolikt förklaringen
till att de godståglade ytorna nu är lägre de
godståglade. Man har tillfört en relativt liten
mängd fosfor i förserket i Främlingshem,
jämfört med den stora mängden kväve.
I Stråsånsforsäket av fosfor Godstång
a markante merfearkt ef d det tillförde
höglikor ir kombination med kväveGodstång.
Som tidigare nämnts tillfördes inte något
fosfor under de första åren i Främlings-

Tall och Contorta

I Högåsen fanns också ett bestånd planerat
1973 med contorta. Godstångreaktion var
kraftig där den löpande tillväxten förbund-
tes under en 5-års period. Contorta
verk-

kända sig för ungskogsGodstång och
har utan godstång en produktion som är
betydligt bättre än vår inhemska tall även
sett ur ett längre tidsperspektiv. I ett exa-

mensarbete, utfört av Tomas Hallius och
Jonas Lindblom vid skogsomställskolan i
Skännskatteberg, var det tydligt att contorta
reagerade mycket kraftigt på godstång än
vanlig tall. I de undersökta försöken var
produktionen utan godstång betydligt högre
för contorta än för vanlig tall (tabell I).
Tabell 1. Merproduktionen vid gödsling i m³/k per hektar för vanlig tall och kontorta tall för de olika försökslokala. Vissa försök har även behandlats med en lägre och en högre gödselgivna.

<table>
<thead>
<tr>
<th>Förrådsland</th>
<th>Tall lägre giva</th>
<th>Tall högre giva</th>
<th>Contorta lägre giva</th>
<th>Contorta högre giva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Främlingshem</td>
<td>60</td>
<td>80</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Hällby</td>
<td>70</td>
<td>90</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Hålludden</td>
<td>80</td>
<td>100</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>Ljeda</td>
<td>90</td>
<td>110</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>Kalbergssjön</td>
<td>100</td>
<td>120</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td>Tillbergsby</td>
<td>110</td>
<td>130</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>Vassbäck</td>
<td>120</td>
<td>140</td>
<td>130</td>
<td>150</td>
</tr>
</tbody>
</table>

År 1925 gödslingseffekt sätt använda kvöve? I tabell 4 (se bilaga 2) är meritövänster per 10 kg tillfört N uträknat för att kunna jämföra ungskogsgödsling med traditionellt engångsgödsling. Vid engångsgödsling får man vid en kvövegivna på 150 kg en merproduktion på 10-20 m³ per hektar. Om vi räknar med 15 m³ per hektar ger gödsling- en 1 m³ per 10 kg N. De försök i tabell 4 (bilaga 2) som är under 1 m³ är således särdeles små (9 stycken) än traditionell gödsling och de som är över 2 m³ (4 stycken). Sannolikt hade fler varit bättre ifall de inte hade avbrutits i förrätt. Om vi ser till andra försök som har fått pågå till dess att behärskade tillräckligt. Detta sammanhang borde det också kontrolleras om det på vissa marker behövs extra tillförsel av fosfor.

Syntes av Korsnäs föröver
- Kraffiga slutenningar (topografien) verkar ha stor betydelse för gödslingsefektten och i flera fall ger övre parter i en sluten närmare gödslingseffekt. Om detta beror på lägre jorddjup eller att en betydande del av gödselgivn har transporterats till de nedre partierna i slutenheterna är svårt att säga. Helt motsatta effekter har dock erhållits där de övre partierna har gett högre produktionseffekt men oftast är detta i svagt sluttande parter.
- En klar tendens är att grundna marker eller marker med varierande jorddjup ger dålig gödslingseffekt. Därför är rekommendationen att undvika att gödsla parter med grund eller varierande jorddjup.
- Markens textur har möjligtvis inverkat på gödslingseffekten där sandmarker, mjöla och lermarker har gett sannolikt gödslingseffekt än sandigt moral.
- Medelhöjden i bestämmen där man börjar gödsla verkar inte ha påverkat gödslingseffekten inom det intervall vi ha haft möjlighet att studera (2.5-5.0 m). Dock ska man vara mycket försiktig att börja gödsla för tidigt (övre 1.0 meters höjd) utan att kombinera detta med herbioxidbehandling.

Markmänska och markfysikaliska förhållanden börde studeras närmar i några av försöken där vi inte kan förklara skillnaderna i gödslingseffekten mellan olika parter. Dessa försök är främst Hemling, Haggardstegen, Risken och Kvarnssjön.

EnligtIRRanalyser i slutet av 80-talet har i de flertalet försöken magnesiumhalten gått ned vid gödslingen, särskilt vid högre givor av kvöve. Nedgången är i somliga fall måttlig men i andra fall större så att halten underskridde de värden som av olika forskare anses som begränsande för tillväxten. Halten var särskilt låg, när det gäller fjällårsherr. Denna fråga bör studeras med dagens metoder. Kanske finns det anledning att undersöka huruvida bor tillförseln varit
The text in the image is not clearly visible. It seems to be a page from a document, but the details are not readable.
Bilaga 1.

Balgrundsbeskrivning till försök med behovsanpassad gödsling

Inledning

Utvecklingen av praktisk gödsling

Den traditionella gödslingen fick så små- ningom stor omfattning i Sverige, upprätt 190 000 ha per år. Men den har sedan av olika anledningar gått ned och omfattar nu 20 000 - 25 000 ha per år.

Syftet med gödslingen
Liksom jordbruken har skogsbruket velat öka produktionen och göra det på ett förs- samt sätt. Syftet med gödslingen kan all- mänt anges med följande punkter. Man vill;

1. Öka tillgången på virke för industri
Under en lång period förutsatt man en svacka i virkeställning och vidtogo en mångårig åtgång så att man skulle kunna fylla ut denna svacka, t ex introduktion av snabbväxande contorta, som kunde drivas med kortare omloppstid. Gödsling var en annan åtgärd som passade bra in i det pro- grammet.

2. Sänka kostnaderna:
 a. Direkta drivningskostnader genom större production per ha och genom grövre dimensioner.
 b. Fasta genom större virkeskvantiteter per arealenhet.
 c. Transportkostnader genom att öka virkesproduktionen närmare industri.

Gödslingen har haft betydelse för en del företag som utjämnar av konkurrerande. Utan alltför stor olägenhet gick det att va- riera kvantiteten mellan olika år. En sådan variation ger bättre likviditet och vinstför- delning.

Dessa positiva effekter framfördes redan när man började med den traditionella gödslingen men de gäller i ännu högre grad i samband med behovsanpassad gödsling som behandlas nedan. Tillväxtökningen per ha och dimensionsoptimeringen blir nämligen avsevärt större vid behovsanpas- sad gödsling i de flesta fall.

Sveriges virkesförsörjning

På alla sista tiden har avvecklingarna inom landet ökat och man tror att virkes- behovet kommer att sänka. Orsakerna till detta torde främst vara industriens ökade behov, intresset för biobränsle och minsk- kade möjligheter att importera virke. Samtidigt minskar tillgången på virke genom avsättningar av skogmark till reservar och genom andra åtgärder för att tillgodose miljövården krav. Vissa debatter är be- kymrade, andra anser att det finns möj- ligheter att avverka mera och att det alltså finns möjligheter att lösa problemen.

Förhållandena och beslut har varit olika hos olika företag. Sådana har gödslingen i
allmänhet inte haft stor omfattning hos de privata skogsägarna.

I och med stormen nu i januari 2005 är det lätt att se att gödsling, särskilt behovsanpassad gödsling, skulle i hög grad kunna minska olägenheterna av stormen för det drabbade området, men även för hela landet. Detta har också förts ut i den intensiva debatt som har kommit igång. Sedan över tio år föreligger det i praktiken absoluta hinder för att utnyttja gödsling i södra Sveriges trädgårdar.

Den traditionella gödslingen

Den moderna forskningens betydelse

Gödsling av värnamn

mellan större och mindre barrmassa och mellan mindre och större rotmassa.

Erfahrenheter utomlands
Man skall inte heller bedriva ett utvecklingsarbete utan att ordentligt ha tagit reda på kunskaper och erfahrenheter utomlands. I första hand bör man skaffa sig kännedom om varmare länder där man snabbt får fram tydliga resultat. Även här vill jag nämna några exempel:

Överhuvudtaget förekommer gödsling i samband med plantering i stor omfattning, kanske särskilt i tropikerna. Utan en effektiv ogräsbekämpning av något slag fungerar verksamheten inte.

SLU:s förskö och sambandet med företo-
gens förskö

Alla dessa noggrannare förskö utgör en grund för de enklare förskö som t.ex Korsnäs har lagt ut. Vid ett företag kan göra att ta fram kunskaper om tekniken. Med enkla och många förskö kan företaget också få fram försköresultat med stort spridning in fråga om ståndorter och beständ. Företaget i också erbjuder forskarna områden för specialundersökningar. Inom ett företag kan gödslingens också lätt kop- plas samman med andra skogsögonslägdat-

Tidigare studier och Korsnäs förskö i bör- jan av 80-talet

Vid de förbalkyrker som gjordes fann vi att det inte skulle vara lätt att helt häva den verkten som uppstår vid en längre torpre- period.

Det fordrades stora områden för att få rimga- liga kostnader. Till stor del var nämligen ett flertal kostnader närmast fasta, såsom kostnaderna för personal, pumpar, kraftför- sörjning, blandning av gödsel och för re- gleringsanordningar. Att spruta ut vatten över skogsmark var knappast möjligt med realistiska kostnader.

Bevattningstekniken har utvecklats i bl a Israel och Kalifornien. Den metod som möjligt skulle vara användbar i svensk skogsmark var droppbevattning. Men slagavståndet var avgörande för anlägg- ningskostnaden.

Ett mindre pilotföretag för att skaffa sig erfarenhet hade blivit nästan lika dyrt som ett större förskö och tidsåtgärd för att få fram resultat skulle ha ökat drastiskt. Det besluts därför att göra ett ganska stort för- skö med droppbevattning. Hela 10 ha be- vattnades. Avståndet mellan dropplysorna valdes till 1 m. De slags avstånd som under- söktes var 5, 10 och 20 m med avståndet 10 m för en stor forskö var arenaled. I för- söket ingick som jämförelse ett par mindre parceller, sammanlagt 0,32 ha, med dysor för sprutning över hela arenaleden.

Eftersom bestämde efter stormfälldningen 1954, som utnyttjades vid Främlingshem, numera mest bestått av tall var det svårt att finna lämpliga gränsbeständ, som bedömdes vara tacksammar att gödsla än tall. Bengt Jonsson, Umeå, har emellertid ett stort utslagsområde i trädbevattning. Han gav oss god- betraktat tillstånd att näringsbevattning och förbettring av detta förskö.

En mångd erfarenheter gjordes i både teck- niskt och biologiskt avseende. Vid 5 m slagsvåstånd hade inverkan på markvege- tation efter något år spätt sig över nästan hela arenaleden. Vid 10 m tog det något år längre. 20 m torde vara för långt och det blir då stora mängder vatten och näringsämnen som sprids på en smal remsa. Spridningen i
sided gick fortare på bättre vegetationstyper. I slutningar skall slangarna ligga parallellt med nödväktornas.

Det gjordes ett allvarligt misstag på Havsrävändena och Främingshem och det var att fosforfördelningen satte in för sent. Vi resonerade som så att på de relativt bör-
diga markerna i Gällstriklande borde det fin-
as tillräckligt av t ex fosfor så att man under de allra första åren kunde tillföra endast kväve och bor. Det visade sig åtsälls vara fel och omtalat Björn Axelssons mät-
ningar med förnämländor förelades halva barsskyddet. Säkerligen var orsaken fos-
forbitr. Efter en så kraftig näringsbrist trer
att antagligen visar att avhjälpa bristen och få igång tillväxten. I en verksamhet av
att här slaget skall man i förväg tänka igen-
nom vilka åtgärder som antagligen är nöd-
vändiga för att man skall få ett säkert och
lyckat resultat. Man bör alltså redan från
början tillföra de ämnen som trädens behö-
ver. Som en förklaring till mistaget kan
nämna att hela gödselsändningen och sprider
ning är en komplicerad hantering som kräver
omvänt förälder och myken utveckling. Just fosfortillsatsen hade vi särskilda svårigheter att få igång.

I enlighet med vad som rekommenderats
tidigare har Kornsıs personal studerat skogsbruket utomlands, såsom i Spanien, Peru, Brasilien, Papua Nya Guinea, Australien, Nya Zeeland, Kanada och USA. Det skedde främst under 70-åren men även senare. Det gav många impulser att se skogsbruk där man arbetade med avsevärt kortare omloppstider, ned till sex år. Kombinationen av olika skogsbedö-
åtändare verkade mycket lovande. Göds-
ling tillämpades kanske mest vid planter-
ingarna och även närstående därefter. I Libéria arbetade Kornsıs personal med en mängd
egna försök och förgynade sammanlagt
uppåt 400 ha. Det var stimulerande att på mycket kort tid få resultat som delvis
kunde användas i Sverige. Sune Linders
försök i Australien och Portugal gav också
mycket snabbare och tidigare resultat än i
Sverige.

Ungskogsödlingen under andra halvan
av 80-talet
Främst med de erfarenheter som vunnits
under första hälften av 80-talet planerade
Kornsıs en större försöksserie som kom att
kallas för Ungskogsödling. Målet var att
jag i yngre bestånd ända ned till plantstadi-
diet och öka tillväxten. Man ville ha stör
spridning fråga om sådana och bestånd.
Särskilt intressanta objekt var sådana där
tillväxten hämmades av någon anledning.
Man ville också ha objekt som skadats på
något sätt, exempelvis av ålg, snäckskytte
eller frost.

Ett första urval gjordes med hjälp av be-
ståndsdagbok. Man kunde tro att det var ett
bra hjälpmedel, men beskrivningarna
innehöll inte riktigt vad man var ute efter och
enheter var framförallt för stora. Bra
försöksobjekt ingick i större beskrivnings-
enheter och kunde inte hittas. Forvaltnin-
gramerna omsådde också att komma med förslag.
Flertalet intressanta objekt kom från den vägen.
Det var svårt att hitta lämpliga
grundsättade i de nordligare delarna av mark-
innehavet. Det blev därför mest till där och
och någon kontotta. Några få parcellförsör
med fyra upprepningar lades ut. Gödslingen
skedde då för hand. I övrigt valdes en
metod som användes i andra sammanhang.
Över en ungskog lades ut en eller två rem-
sor med något hundtal meters bred. Var
lutande marker placerades remsorte vin-
kelrätt mot nödväktornas. På sidan om rem-
san (remsorta) skulle det finnas be-
stånd av samma slags för järnföretag. Tre
cirkelnytor med vardera 10 m radie lades
vanligt ut på områden som skulle behan-
dras och tre cirklar i likartat bestånd i närheten på det som inte skulle behand-
las. Cirklarna lades alltså ut subjektivt.
Man fick på det här sättet parvisa jämfö-
er. Särdeles jämförelser kunde exempelvis
läggas ut upp till och ned till en slutning. I
centrum på alla cirklar sattes en alumi-
niumstolpe. Gödslingen utfördes med heli-
kopter. Begränsningsslinjerna utmärktes
tydligt och permanent så att de var synliga
även från luften. Metoden finns närmare
beskrevna i de parrar som utgör dokumenta-
tion för försöken och kan där studeras på
cartor för varje försök.

Med satellitavveckling både i luften och
på marken bör utläggning och utmärkning av
försök kunna underlättas. Aluminiumstol-
parna bör nog ända bibehållas.

Doseringen utfördes enligt rekommenda-
tioner av flera forskare. Sune Linder kon-
stat erad att man i de praktiska försök som
utlagnings under 80-talet inte fick lika hög
tillväxtöljning som SLU:s försök. Han skaffade därför pengar till att göra beräkningar på i stort sett alla försök som skogsföretagen lagt ut.
Samtidigt gjordes barranalyser på SLUs
egna försök. Det finns sällsamma barranaly-
s, i regel från ett par tillfället. Under den
senare delen av gödslingen bestämde do-
seringen i någon mån av resultaten av des-
sa barranalyser.

Ett problem var att för en så storfigg gödsling få ett lämpligt gödselmedel. Det som mest användes var en fullgödsel kall-
ad grönkytgödsel. Trogen var det för litet
magnesium i detta medel och kanske för
litt bor och fosfor. Samma problem hade
man i den verksamhet som Skogsbruksutkastet bedrev. Under slutet av 80-
talet och alldeles i början av 90-åtta arte-
medan man med ett projekt, där man vid
planteringen och tiden närmast därefter
kunde tillföra gödsel och bekämpa ogräset.
Det togs då fram ett speciellt gödselmedel helt enligt våra avvisningar av Mölndycke i
Falun. Tyvärr kom det inte till någon större
användning.

Utläggning
På SLUs försök gjordes undersökningar
med lysimetrar för att fastställa eventuell utläggning. På liggands markers undersökte
man skillnaden i utläggning på markberedda
hyggen och icke markberedda. Det skedde
genom att ta vattenprover i bäckar som
rann genom respektive områden. Tyvärr
torde inte sådana mätningar ha gjorts på
områden som behandlats med behovsan-
passad gödsling. Vi var medvetna om att
om lafva man ansåg att tillämpa nåringoptime-
ring i större skala var man tvingen att för-
vissa sig om att miljön inte skadades ge-
nom utläggning. Kornsıs, tillsammans med
Björn Axelsson där anställd vid Vattenfall,
replanerades därför i slutet av 80-talet
andra avvägningar, därefter där skulle
en del skulle behandlas med behovsanpassad gödsling och en del skulle vara obehandlad. Avsikt-
en var att även Vattenfall skulle delta i
denna undersökning. Hydrologer kontakta-
des för det svarta valet av objekt och för
uppläggningen av försöken. Tyvärr blev det
inte något av med dessa undersökningar.

Ekonomin kalkyl
När Kornsıs visade sina försök och förde
fram önskemålet om att behovsanpassad gödsling skulle startas i stör skala, fick vi det
svaret att vi var tvungna att visa att
hanteringen var lönsamt. Det samlades där-
för i SIMS-institutionens regi en grupp på
närmare 10 personer som diskuterade upp-
läggningen av en ekonomisk kalkyl. Ett
arbete sattes igång som efter något år resul-
terade i en uppsats, ”Näringsoptimering i
praktiskt skogsbruk - Ekonomiska aspekter
på gödsling enligt Strånsföretet” av
Lennart Eriksson och Paul Willen, (serien
påsatsar nr 37, 1991-01-23). Institutionen
företrädande, Göran Lönn, skrev i
förordet: ”I försöket har näringstopriner-
de gödsling med fasta gödselmedel gett en,
för skogliga åtgärder, anmärkningsvärt högt
lönsamhet.” I uppsatsen ges olika alternati-
va förutsättningar och behandlingens kon-
sekvenser för skogsbruket tas upp. Det
bröder ändå till 1997 innan en del av
skogsbrukset engagerade sig i Fiberskogs-
projektet. Det kan noteras att det som tem-
laste kallades optimiseringsgödsling har vi
nu valt att benämna behovsanpassad göds-
ling.
Föröken hos Korsnäs, som ingår i Ungskogsägden, blev vanligen behandlade 5 eller 4 år i rad. Gödslingen upphörde därefter helt. De som endast behandlades 4 år till största delen belägna i norra delen av markkommunen och ofta på svagare marker. Det är olyckligt ernoget givorna där i allmänhet var små och bestående behövde där längre tid för att bygga upp biomassan och för att öka tillväxten.

Med den uppläggning som varit ges emelertid möjlighet att studera gödslingens avtagande effekt efter att det tillförlitligt upphört, men alltså knappast från den högre nivå som skulle ha erhållits om gödslingen hade fortsatt ett par gånger till.

För att få en detaljerad bild av den effekt som varit besökt vi att nu göra en klavering, men också börja ett antal provträd, 4 på varje cirkyleta, om möjligt ända tillbaka till omkring 1980. Även höjden för varje år skulle mätas. Man får då uppgifter om utvecklingen i diameter, höjd och volym för varje år och gödslingseffekten kan fastställas i detalj.

Försöksdesignens fördelar och nackdelar bör diskuteras. Här kan sägas att det nu omkring 20 år senare var möjligt att utan större svårigheter återfinna gränserna för gödsled områden och provytorna. Frågan om parcellförsöken lädes ned stor möda på att innehavare upprepa lika parceller. Under de gångna tiden har emellertid parcellerna i en del fall förändrats så att de inte längre är jämförbara. Det är förändringar som inte orsakats av behandlingen. Parcellerna har därför i flera fall fått måtas på cirkelytor som är låg ut inom parcellerna, där man undvikte de ovan omnänta förändringarna. Läkämpta förändringar har även upptäckt på en del av cirkelytorna i de parvisa jämförelserna. I några få fall har en cirkelyta slöptes och ersatts med en ny som har ansetts vara en bättre jämförelse.

En relativt enkel försöksmetod valdes emedan effekterna förväntades bli stora och skillnaderna mellan olika försöksled skulle då framträda tydligt. Genom att gödslingen avbrotts tidigare än beräknat har vi i en del fall inte fått dessa stora skillnader. Frågan är då om försöksmetodiken är alltför enkel. Framkomma resultat tyder på att de flesta fall är skillnaderna tillräckligt stora.

Ökning av algetbera
Viltforskare börjar fundera över möjligheterna att öka beurtavlingen. Det torde i första hand vara frågan om vinterbetret och basfrån i huvudvallen av landet är tallungskog. Vid behovsanpassad gödsling ökas tillväxten på algetbera avsevärt i varje fall om man gödslar tallungskog. I jämförelse med traditionell gödsling är effekten avsevärt större.

Den här effekten kan utnyttjas på två sätt; antingen på områden där skogsbruk inte bedrivs, t ex i kraftledningsgator, eller i normalt skogsbruk. Det första fallet torde inte komma att omfatta så stora arealer och torde få omsesöjas av jägarna. Det andra fallet är intressantare och där har skogsbruk och jägare gemensamma intressen.

Det finns anledning att beaktöra den här effekten med ökad betetstillgäng genom behovsanpassad gödsling och att diskutera och eventuellt utnyttja den.

Urval av objekt

Slutord
För att den behovsanpassade gödslingen skall bli ett åtgärd som är accepterad och som är en naturlig del av skogsbruket fördelas det att det atvillkort utfylls...

Det här innebär att de som utvecklar behovsanpassad gödsling måste gå längre än tidigare, om det skall bli några produktiva resultat. Sammanfattningsvis måste de utveckla metoderna längre och de måste se till att den praktiska tillämpningen kommer igång och får volym.

Ett övergripande mål är att göra skogsbru- ket till en modern och avancerat näringsväg även på det biologiska området. Skogsbru- ket skall kunna följa med utvecklingen inom näringsliv och samhälle och därigenom överleva. En utvecklad och riktigt utförd behovsanpassad gödsling kan bidra till att uppnå det målet.

Gävle 2005-01-21
Paul Willén

Bilaga 2.

Tabell

Tabell 1. Latitud, longitud, höjd över havet och olika klimatavvikelser för försökslokalaerna.

<table>
<thead>
<tr>
<th>Ortsled</th>
<th>Lat.</th>
<th>Long</th>
<th>H-f.n (m)</th>
<th>Vegetationsavv.</th>
<th>Temperaturavv.</th>
<th>Av- ned. (°C)</th>
<th>Nederbörd under veg. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Åkavälsbacken</td>
<td>62.10</td>
<td>15.30</td>
<td>420</td>
<td>145</td>
<td>580</td>
<td>675</td>
<td>350</td>
</tr>
<tr>
<td>Björnormar</td>
<td>62.10</td>
<td>15.00</td>
<td>400</td>
<td>146</td>
<td>596</td>
<td>650</td>
<td>350</td>
</tr>
<tr>
<td>Birken</td>
<td>60.60</td>
<td>17.55</td>
<td>10</td>
<td>175</td>
<td>115</td>
<td>500</td>
<td>355</td>
</tr>
<tr>
<td>Bankgård</td>
<td>60.60</td>
<td>17.55</td>
<td>10</td>
<td>175</td>
<td>115</td>
<td>500</td>
<td>355</td>
</tr>
<tr>
<td>Kräken</td>
<td>60.55</td>
<td>16.25</td>
<td>130</td>
<td>167</td>
<td>120</td>
<td>725</td>
<td>400</td>
</tr>
<tr>
<td>Hemling övre</td>
<td>63.40</td>
<td>19.00</td>
<td>380</td>
<td>136</td>
<td>841</td>
<td>760</td>
<td>350</td>
</tr>
<tr>
<td>Hemling mellan</td>
<td>63.40</td>
<td>19.00</td>
<td>370</td>
<td>137</td>
<td>850</td>
<td>750</td>
<td>350</td>
</tr>
<tr>
<td>Hemling nedre</td>
<td>63.40</td>
<td>19.00</td>
<td>360</td>
<td>138</td>
<td>850</td>
<td>750</td>
<td>350</td>
</tr>
<tr>
<td>Berggårdsgren övre</td>
<td>60.50</td>
<td>16.25</td>
<td>255</td>
<td>162</td>
<td>1392</td>
<td>752</td>
<td>400</td>
</tr>
<tr>
<td>Berggårdsgren mellan</td>
<td>60.50</td>
<td>16.25</td>
<td>255</td>
<td>162</td>
<td>1392</td>
<td>752</td>
<td>400</td>
</tr>
<tr>
<td>Berggårdsgren nedre</td>
<td>60.50</td>
<td>16.25</td>
<td>255</td>
<td>162</td>
<td>1392</td>
<td>752</td>
<td>400</td>
</tr>
<tr>
<td>Risken övre</td>
<td>60.50</td>
<td>16.25</td>
<td>255</td>
<td>162</td>
<td>1392</td>
<td>752</td>
<td>400</td>
</tr>
<tr>
<td>Risken mellan</td>
<td>60.50</td>
<td>16.25</td>
<td>255</td>
<td>162</td>
<td>1392</td>
<td>752</td>
<td>400</td>
</tr>
<tr>
<td>Risken nedre</td>
<td>60.50</td>
<td>16.25</td>
<td>255</td>
<td>162</td>
<td>1392</td>
<td>752</td>
<td>400</td>
</tr>
</tbody>
</table>

Tabell 2. Ståndsortförråddem och beståndsdata för de olika försökslokalaerna.

<table>
<thead>
<tr>
<th>Ortsled</th>
<th>Ultralag</th>
<th>Tenner</th>
<th>Jordöpp</th>
<th>Blockva-</th>
<th>Marklin-</th>
<th>Risklig</th>
<th>Stav-</th>
<th>bef till-</th>
<th>Sl (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Åkavälsbacken</td>
<td>Gran</td>
<td>Sa-Me</td>
<td>Växtande</td>
<td>Frisk</td>
<td>Nej</td>
<td>Bältre</td>
<td>T20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Björnormar</td>
<td>Gran</td>
<td>Mo</td>
<td>Växtande</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birken</td>
<td>Gran</td>
<td>Less</td>
<td>Växtande</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bankgård</td>
<td>Gran</td>
<td>Lax</td>
<td>Växtande</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemling övre</td>
<td>Gran</td>
<td>Måd</td>
<td>Måd</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemling mellan</td>
<td>Gran</td>
<td>Sa-Me</td>
<td>Måd</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemling nedre</td>
<td>Gran</td>
<td>Sa-Me</td>
<td>Måd</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berggårdsgren övre</td>
<td>Gran</td>
<td>Sa-Me</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berggårdsgren mellan</td>
<td>Gran</td>
<td>Sa-Me</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berggårdsgren nedre</td>
<td>Gran</td>
<td>Sa-Me</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risken övre</td>
<td>Gran</td>
<td>Sa-Me</td>
<td>Växtande</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risken mellan</td>
<td>Gran</td>
<td>Sa-Me</td>
<td>Växtande</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risken nedre</td>
<td>Gran</td>
<td>Sa-Me</td>
<td>Växtande</td>
<td>Frisk</td>
<td>Nej</td>
<td>Gräs</td>
<td>G20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabell 3. Trädhöjd vid gödslingsstart, gödslingsperiod, gödslingsstidpunkt och tillförd mängd närings i de olika försökslokaler.

<table>
<thead>
<tr>
<th>Område</th>
<th>Trädhöjd vid första gödsling (m)</th>
<th>Gödslingsperiod</th>
<th>Gödslingsstidpunkt (veckor)</th>
<th>Total givn N (kg/ha)</th>
<th>Total givn P (kg/ha)</th>
<th>Total givn K (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akvainvallhocken referens</td>
<td>0.9</td>
<td>200</td>
<td>44</td>
<td>110</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Akvainvallhocken munkro</td>
<td>0.7</td>
<td>211</td>
<td>-0.79</td>
<td>-15.8</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Akvainvallhocken N-Mg</td>
<td>0.9</td>
<td>211</td>
<td>-0.80</td>
<td>-16.0</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Björnberget referens</td>
<td>1.6</td>
<td>20.7</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flensberget</td>
<td>2.4</td>
<td>35.7</td>
<td>0.62</td>
<td>14.2</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Banken referens</td>
<td>12.5</td>
<td>133.6</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banken</td>
<td>11.2</td>
<td>153.7</td>
<td>0.69</td>
<td>21.4</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Bankängen referens</td>
<td>6.0</td>
<td>75.9</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bankängen lägre</td>
<td>5.0</td>
<td>113.7</td>
<td>1.19</td>
<td>38.8</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Bankängen högre</td>
<td>4.3</td>
<td>97.0</td>
<td>0.42</td>
<td>22.8</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Edelsten referens</td>
<td>3.9</td>
<td>107.5</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edelstone</td>
<td>2.6</td>
<td>137.0</td>
<td>1.03</td>
<td>30.8</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Hemling referens</td>
<td>5.3</td>
<td>41.3</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemling</td>
<td>6.4</td>
<td>101.7</td>
<td>1.99</td>
<td>59.3</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Hjärnströmgaren referens</td>
<td>17.9</td>
<td>136.2</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hjärnströmgaren</td>
<td>13.6</td>
<td>190.0</td>
<td>1.08</td>
<td>35.1</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Högdens gran referens</td>
<td>21</td>
<td>82</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Högdens gran lägre</td>
<td>22</td>
<td>107</td>
<td>0.73</td>
<td>24</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Högdens gran högre</td>
<td>19</td>
<td>141</td>
<td>1.51</td>
<td>64</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Högdens conferta referens</td>
<td>13</td>
<td>202.0</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Högdens conferta</td>
<td>17</td>
<td>229.0</td>
<td>1.05</td>
<td>23</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Frändingshem referens</td>
<td>22</td>
<td>136.4</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frändingshem</td>
<td>20</td>
<td>186.3</td>
<td>0.45</td>
<td>54.9</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Kvarnbyn referens</td>
<td>6.6</td>
<td>125.0</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvarnbyn</td>
<td>6.6</td>
<td>143.5</td>
<td>0.58</td>
<td>18.5</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Lilljungagård referens</td>
<td>17.6</td>
<td>95.4</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilljungagård</td>
<td>5.3</td>
<td>63.2</td>
<td>-0.66</td>
<td>-19.9</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>N. Sävåsön referens</td>
<td>19</td>
<td>93.2</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Sävåsön</td>
<td>19</td>
<td>159.6</td>
<td>1.24</td>
<td>60.4</td>
<td>***</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 4. Produktionsdata, gödslingseffekt och statistiska skillnader mellan gödsat och ogödsat för de olika försökslokaler (p ≤ 0.05 = *, p ≤ 0.01 = **, p ≤ 0.001 = ***).

| Område | Sående volym vid första gödsling (m³/ha) | Sående volym 2001 (m³/ha) | Måttillväxt per tillförd mängd N (m³/10 kg N) | Måttillväxt vid gödsling (m³/ha) | Signifikans (*, **, ***)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Akvainvallhocken referens</td>
<td>0.9</td>
<td>37.1</td>
<td>-0.79</td>
<td>-15.8</td>
<td>**</td>
</tr>
<tr>
<td>Akvainvallhocken munkro</td>
<td>0.7</td>
<td>21.1</td>
<td>-0.80</td>
<td>-16.0</td>
<td>**</td>
</tr>
<tr>
<td>Akvainvallhocken N-Mg</td>
<td>0.9</td>
<td>21.1</td>
<td>-0.80</td>
<td>-16.0</td>
<td>**</td>
</tr>
<tr>
<td>Björnberget referens</td>
<td>1.6</td>
<td>20.7</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flensberget</td>
<td>2.4</td>
<td>35.7</td>
<td>0.62</td>
<td>14.2</td>
<td>*</td>
</tr>
<tr>
<td>Banken referens</td>
<td>12.5</td>
<td>133.6</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banken</td>
<td>11.2</td>
<td>153.7</td>
<td>0.69</td>
<td>21.4</td>
<td>*</td>
</tr>
<tr>
<td>Bankängen referens</td>
<td>6.0</td>
<td>75.9</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bankängen lägre</td>
<td>5.0</td>
<td>113.7</td>
<td>1.19</td>
<td>38.8</td>
<td>**</td>
</tr>
<tr>
<td>Bankängen högre</td>
<td>4.3</td>
<td>97.0</td>
<td>0.42</td>
<td>22.8</td>
<td>*</td>
</tr>
<tr>
<td>Edelsten referens</td>
<td>3.9</td>
<td>107.5</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edelstone</td>
<td>2.6</td>
<td>137.0</td>
<td>1.03</td>
<td>30.8</td>
<td>*</td>
</tr>
<tr>
<td>Hemling referens</td>
<td>5.3</td>
<td>41.3</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemling</td>
<td>6.4</td>
<td>101.7</td>
<td>1.99</td>
<td>59.3</td>
<td>***</td>
</tr>
<tr>
<td>Hjärnströmgaren referens</td>
<td>17.9</td>
<td>136.2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hjärnströmgaren</td>
<td>13.6</td>
<td>190.0</td>
<td>1.08</td>
<td>35.1</td>
<td>**</td>
</tr>
<tr>
<td>Högdens gran referens</td>
<td>21</td>
<td>82</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Högdens gran lägre</td>
<td>22</td>
<td>107</td>
<td>0.73</td>
<td>24</td>
<td>*</td>
</tr>
<tr>
<td>Högdens gran högre</td>
<td>19</td>
<td>141</td>
<td>1.51</td>
<td>64</td>
<td>***</td>
</tr>
<tr>
<td>Högdens conferta referens</td>
<td>13</td>
<td>202.0</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Högdens conferta</td>
<td>17</td>
<td>229.0</td>
<td>1.05</td>
<td>23</td>
<td>*</td>
</tr>
<tr>
<td>Frändingshem referens</td>
<td>22</td>
<td>136.4</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frändingshem</td>
<td>20</td>
<td>186.3</td>
<td>0.45</td>
<td>54.9</td>
<td>***</td>
</tr>
<tr>
<td>Kvarnbyn referens</td>
<td>6.6</td>
<td>125.0</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvarnbyn</td>
<td>6.6</td>
<td>143.5</td>
<td>0.58</td>
<td>18.5</td>
<td>**</td>
</tr>
<tr>
<td>Lilljungagård referens</td>
<td>17.6</td>
<td>95.4</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilljungagård</td>
<td>5.3</td>
<td>63.2</td>
<td>-0.66</td>
<td>-19.9</td>
<td>**</td>
</tr>
<tr>
<td>N. Sävåsön referens</td>
<td>19</td>
<td>93.2</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Sävåsön</td>
<td>19</td>
<td>159.6</td>
<td>1.24</td>
<td>60.4</td>
<td>***</td>
</tr>
</tbody>
</table>