Mapping the probability of wind disturbances in forests – an empirical modelling approach

Susanne Suvanto

Natural Resources Institute Finland (Luke)

Digital Tools for Forestry Alnarp, 6.2.2019 FINLANDS SKOGSSTIFTELSE

Thunder storms in 2010 in Eastern and Central Finland – damage: 8.1 million m³

Photos: Erkki Oksanen / Luke Susanne Suvanto

2

INSTITUTE FINLAND

Project StromTree: Creating national highresolution forest wind damage risk maps

Wind damage observations in national forest inventory

> Statistical modelling of damage probability using forest properties and environmental variables

Computing damage risk maps

with GIS data of forest properties, land use, soil & wind conditions

\leftarrow \rightarrow C \triangle (1) https://metsainfo.luke.fi/fi/tuulituhoriskikartta

NATURAL RESOURCES

☆ 🛛 :

NATURAL RESOURCES

Wind damage observations in the Finnish National Forest Inventory (NFI)

Field data for the 11th National Forest Inventory (NFI) was collected from 2009 to 2013

In this study we use

- 41 397 NFI plots on forest areas, where
- 1 070 plots had wind damage in the forest stand (within previous 5 years)
- ~ 2.6% of plots with wind damage

Statistical modelling & machine learning approaches

Generalized linear mixed models (GLM)

 Fully parametric models (logistic regression model)

Generalized linear additive models (GAM)

 Accounting for non-linearity with non-parametric smoothing splines

Boosted regression trees (BRT)

Ensembles of regression trees

Increasing

- flexibility
- ability to account for non-linearity
- risk of overfitting

UNPUBLISHED RESULTS Responses of damage probability to model predictors

UNPUBLISHED RESULTS **Responses – comparison of methods**

GLM

GAM

BRT

UNPUBLISHED RESULTS

Cross-validation results

10-fold cross-validation

* AUC when full data used for both training and testing

→ GLM model chosen for the map

NATURAL RESOURCES

GIS data for model predictors

Spatial predictions of damage probability

WIND DAMAGE PROBABILITY MAP

NATURAL RESOURCES

UNPUBLISHED RESULTS

Testing with new NFI data

Comparing the map predictions to NFI12 damage observations

- with wind damage
- without wind damage

Wind damage probability map for Finland

- Shows the wind sensitivity of forests in fine spatial resolution
- Release as:
 - 1. Easy to use web-map application (out now & developing) https://metsainfo.luke.fi/en/tuulituhoriskikartta
 - 2. GIS data set (out later)
- Methods & results will also be published in a scientific paper

Thank you!

#MyrskyPuu #Sto<u>rmTree</u>

