

SCIENCE AND FOR EDUCATION FOR SUSTAINABLE LIFE

Silage juice in diets to weaner pigs and pregnant sows

Magdalena Presto Åkerfeldt, SLU, Dept. of Animal Nutrition and Management

Green bio-refineries and fractions from ley crops – future protein feed?

Background

- Ley crops theoretically potential to contribute with nutrients to pigs
 A locally prouduced sustainable energy and protein feed ingredient in diets to pigs
- Press juice from fresh or ensiled ley in biorefinery theoretically increased possibilities for pigs to utilise nutrients compared with if intact ley crops or silage is fed
- Fractions from fresh and ensiled green biomass show high nutrient quality and can replace parts of other feed ingredients in rations to pigs (Adler et al., 2018; Rinne et al, 2018; Damborg et al., 2020; Keto et al. 2021; Stødkilde et al, 2021)
- Important results, however not comparable
 - Need of more studies and more of digestibility and applicability focus

Fresh or ensiled ley crops through a screw press

Photos: Karolina Bergstöm, Magdalena Åkerfeldt

Juice fraction is separated and stored

Quality of different juice fractions

Material	Сгор	CP (g/kg DM)	Lys (g/kg CP)	Reference
Fresh	80% timothy and meadow fescue, 20% red clover	204	50.0	Adler et al., 2018
	White clover	282	42.7	Damborg et al., 2020
	Red clover	238	40.2	Damborg et al., 2020
	Lucerne	323	48.8	Damborg et al., 2020
	Perennial ryegrass	151	41.1	Damborg et al., 2020
	Mixed timothy, meadow fescue, English ryegrass, red clover and white clover	140	-	Presto Åkerfeldt (pers. comm)
Ensiled	Mixed timothy and meadow fescue sward	279	48.0	Keto et al., 2021
	Mixed timothy, meadow fescue, English ryegrass, red clover and white clover	157 193	43.8 36.3	Presto Åkerfeldt et al., 2022 Presto Åkerfeldt (pers. comm)

Objective

• Evaluate the applicability of silage juice in liquid diets to weaner pigs and pregnant sows and its' effects on production and health

Photo: Magdalena Åkerfeldt

Photo: Emelie Brindbergs

Objective

- Study the "theoretical potential" in practice
 - GreenValleys-project focus on innovation and development
 - An applied feeding trial designed for the practical conditions at a commercial farm

Photo: Magdalena Åkerfeldt

Photo: Emelie Brindbergs

Experiments

- Weaned pigs
 - 96 (LYxH) from four batches (in each batch: 4 groups with 6 pigs/group)
 - 6 w age until delivery to fattening unit at 11 w age
 - Control (C) = commercial feed mixed with water prior to feeding
 - Silage juice (SJ) = commercial feed mixed with SJ instead of water (SJ theoretically replacing 10% of crude protein content)
- Pregnant sows
 - 24 (LY) from three batches (in each batch: 8 sows)
 - 6 w after service until 1 w pre-farrowing (56 days)
 - Control (C) = commercial feed mixed with water prior to feeding
 - Silage juice (SJ) = commercial feed mixed with SJ instead of water

(SJ theoretically replacing 15% of crude protein content)

Registrations

- Weaned pigs
 - Growth, cleanliness of pens and pigs, clinical health indicators
- Pregnant sows
 - Weight and body condition, cleanliness sows, clinical health indicators, litter characteristics at farrowing

Health – Weaned pigs and sows

- Weaned pigs: No deviations in body condition, leg health (lameness), shaking, gasping, breathing or sneezing were observed
- Sows: No deviations in udder, injuries on body/legs/hoofs/ears, leg health (lameness), shaking, gasping, breathing or sneezing, distorted snout or rectal prolapse

Growth – Weaned pigs

Variable	SJ-diet	C-diet
Live weight at study start (kg)	14.0 ± 2.04	13.6 ± 2.36
Live weight at study end (kg)	30.0 ± 4.48	29.5 ± 4.62
Days from study start to end	32.9 ± 3.64	33.0 ± 3.70
Commercial feed intake in total (kg)	30.7 ± 5.0	34.2 ± 5.4
SJ intake in total (kg)	54.3 ± 8.9	0 ± 0.0
Water intake (kg)	1.6 ± 0.4	56.0 ± 8.8

Individual pig weights, number of days, feed, silage juice and water intake (Mean \pm StD). Individual intake of commercial feed, SJ and water is based on the amount provided per pen divided with the number of pigs per pen (six pigs/pen). N = 16 groups, 8 groups/treatment.

Growth and feed intake – Weaned pigs

Individual pig growth and feed conversion (kg commercial feed/kg growth and MJ NE/kg growth), LS-means and SE values. N = 16 groups, 8 groups/treatment.

Individual pig growth and feed conversion (kg commercial feed/kg growth and MJ NE/kg growth), LS-means and SE values. N = 16 groups, 8 groups/treatment.

Cleanliness body – Weaned pigs

Cleanliness body – Weaned pigs

Cleanliness head – Weaned pigs

Cleanliness head – Weaned pigs

Cleanliness rectum and pens – Weaned pigs

Cleanliness variable	SJ-diet	C-diet	SE	P-value
Rectum (% of pigs)				
Score 0: <i>clean</i>	54.2	64.6	10.10	0.487
Score 1: dirty around rectum but not tail	33.3	07 1	0 88	0 667
or legs	55.5	21.1	9.00	0.007
Score 2: dirty around rectum, tail and	12 5	83	6.01	0 681
legs	12.5	0.5	0.91	0.001
Pen (deviation cleanliness, % of pens)				
Near feed trough	37.5	12.5	12.50	0.195
Lying area	25.0	12.5	15.31	0.580
Near water source	62.5	62.5	21.65	1.000

Cleanliness rectum and pens – Weaned pigs A c: dimeter differences in dirtiness in the rectum area **Cleanliness variable** alue Rectum (% of pigs) 0.487 0.667 0.681 Pe eanliness, % of pens) Ne 37.5 12.5 12.50 0.195 ed trough 25.0 12.5 15.31 0.580 Lying area Near water source 62.5 21.65 1.000 62.5

Weight and back fat thickness – Sows

• No significant difference in weight and body condition changes during pregnancy. SJ-diet sows gained numerically less. *Small sample size – results should be interpreted with some caution.*

	Weight (kg)		Body condition (mm back fat)		
	Start	Weight change	Start	Back fat thickness change	
SJ-diet	285.8 ± 49.2	50.8 ± 9.5	16.8 ± 3.5	2.9 ± 2.0	
C-diet	275.6 ± 34.6	54.8 ± 9.2	18.1 ± 3.7	4.1 ± 4.0	
		P=0.477		P=0.267	

Individual sow weight and back fat thickness (mm) at start and changes during the study period (Mean ± StD). N = 12 sows in SJ-diet and N = 11 sows in C-diet.

Litter characteristics – Sows

 Descriptive statistics of litter characteristics. SJ-diet sows performed numerically better (P>0.005). Small sample size – results should be interpreted with some caution.

	SJ-diet (N=11)		C-diet (N=10)	
	Mean	Std	Mean	Std
Total number of born	17.6	4.62	15.3	3.13
Live born	15.8	4.55	14.0	2.57
Litter weight (kg)	30.5	7.57	27.1	4.38

Cleanliness – Sows

	SJ-diet (% sows dirty)	C-diet (% sows dirty)	P-value (Chi-square)
Back/body	41.7	27.3	0.469
Left side body	41.7	27.3	0.469
Right side body	33.3	27.3	0.752
Udder/belly	0	0	
Head	91.7	54.6	0.043
Rectum	16.67	0.00	0.157
Legs	41.7	0	0.016

Percent sows that were dirty (> 20% of the area) on the head, body, belly, rectum and legs. N = 12 sows in SJ-diet and N = 11 sows in C-diet.

Cleanliness – Sows

Summary results & Conclusion

- Quality of silage juice lower than expected
- No deviation in health parameters
- No significant effects on pig growth and feed efficiency in pigs or sow weight, body condition changes or litter characteristics
- Minor effect on hygienic measures
 - Pigs fed silage juice were slightly dirtier on their heads, bodies or legs
 - No difference in cleanliness in rectum or in pens

Summary results & Conclusion

- Quality of silage juice
- No deviation.
- Press juice from silage is a potential local feed ingredient in liquid feeding evetem and can contribute to the nutrient events to weaped nice and Tess Juice nom sliage is a polenlia local leeu ingreuent in inquiu ree System and can contribute to the nutrient supply to weaned pigs and prement equie We can conclude: Continue evaluation of the difference in cleanliness
 - Program 2019 In order to estimate the nutritive value of silage juice for pigs to include in In order to estimate the nutritive on nutrient directivity is neared feed recipes' for pigs, more studies on nutrient digestibility is needed

Thank you for your attention!

Magdalena Presto Åkerfeldt, Dept. of Animal Nutrition and Management

magdalena.akerfeldt@slu.se

