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Northern voles and lemmings are famous for their spectacular multiannual population cycles with high

amplitudes. Such cyclic vole populations in Scandinavia have shown an unexpected and marked long-term

decline in density since the early 1970s, particularly with a marked shift to lower spring densities in the

early 1980s. The vole decline, mainly characterized by a strongly decreased rate of change in numbers over

winter, is associated with an increased occurrence of mild and wet winters brought about by a recent

change in the North Atlantic Oscillation. This has led to a decrease in winter stability and has shortened

the period with protective snow cover, the latter considered as an important prerequisite for the occurrence

of multiannual, high-amplitude cycles in vole populations. Although the vole decline is predicted to be

negative for predators’ reproduction and abundance, empirical data showing this are rare. Here we show

that the dynamics of a predator–prey system (Tengmalm’s owl, Aegolius funereus, and voles), have in recent

years gradually changed from 3–4 yr, high-amplitude cycles towards more or less annual fluctuations only.

Keywords: predator–prey cycles; phase diagrams; North Atlantic Oscillation change; long-term decline;

changing dynamics
1. INTRODUCTION
In Scandinavia, the density of northern vole populations

displays multiannual (often 3–4 yr) cycles, whereas the

southernmost ones are non-cyclic, showing only seasonal

fluctuations (Hansson & Henttonen 1985). This gradient

in cyclicity has been ascribed mainly to a gradual increase

in snow cover from south to north (Hansson & Henttonen

1985). Despite intense research, the mechanisms causing

these multiannual cycles remain unclear (Stenseth 1999).

However, predation is currently frequently advocated as

the favourite explanation (Hanski & Henttonen 1996;

Hanski et al. 2001; Gilg et al. 2003), although the

generality of its applicability to different vole and lemming

populations has to be examined (Hudson & Bjørnstad

2003), and it should also be noted that the possible role of

disease has so far been poorly explored (Hansson &

Henttonen 1988; Stenseth 1999; Niklasson et al. 2003;

Cavanagh et al. 2004; Hörnfeldt 2004).

In addition to the cycles in northern Scandinavia, there

has been a long-term decline in the density of different vole

populations in this area (Hörnfeldt 1994; Hanski &

Henttonen 1996; Hansen et al. 1999). Thanks to the

early establishment of the Swedish National Environmen-

tal Monitoring Programme, we now have data from one of

the longest and geographically most extensive vole

monitoring programmes, from boreal Sweden in northern

Scandinavia (Hörnfeldt 1994, 2004). An analysis of these

long-term population density data from 1971–2003 was

recently undertaken to highlight important characteristics

of the current long-term decline of the sympatric voles

Clethrionomys glareolus, Clethrionomys rufocanus and

Microtus agrestis (Hörnfeldt 2004). One of the most

striking features of the decline was a decrease in rate of

change in numbers over winter (hereafter termed

wintering success) for all species, from the 1970s and

onwards. Since the mid-1980s, the winter decrease in
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density in the second year of cycles more or less

neutralized or even overrode the density increase in the

preceding summer reproductive season (the cycle being

defined as starting in the spring of the year with the highest

rate of increase in the subsequent summer; Hörnfeldt

1994, 2004). The build-up of typical 3–4 yr, high-

amplitude cycles in two large annual steps in the 1970s

was usually then replaced by a build-up in one smaller

annual step, leading to low-amplitude cycles, which in the

most recent years has approached seasonal density

variations only (Hörnfeldt 2004). Because of the larger

winter declines, the long-term decline in vole numbers is

most evident for spring densities, with a major shift from

higher densities in the 1970s, to lower, but still decreasing,

densities in the 1980s and onwards (Hörnfeldt 2004 and

figure 1a,c).

The decrease in the voles’ wintering success has

coincided with a change in the climate moderating

phenomenon, the North Atlantic Oscillation (NAO). In

Scandinavia, positive NAO-index values are associated

with mild and wet winters, and negative values with cold

and dry winters (Hurrell 1995, 2002), although precipi-

tation effects vary within the area (Uvo 2003). Since the

early 1980s there has been a lengthy period dominated by

high positive NAO-index values, possibly influenced by

effects of global warming (Hurrell 1995, 2002; Hurrell

et al. 2001). As a consequence of this extreme positive

NAO-index phase, there has been a clear rise in winter

temperature in this part of Scandinavia since the late

1980s (Alexandersson 2002). Thus, winters have become

less stable, with a shorter period with protective snow

cover, causing more frequent thaws and freezing periods

leading to formation of icebark on the ground (Hörnfeldt

2004; see also Angerbjörn et al. 2001). These conditions

have recently been experimentally shown to be detri-

mental to vole survival during winter (Aars & Ims 2002).

Although the detailed mechanisms of the decrease in vole

wintering success demand further research (Aars & Ims
q 2005 The Royal Society
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Figure 1. Vole density index, expressed as number of trapped
individuals per 100 trap-nights, for pooled numbers of
Clethrionomys glareolus, C. rufocanus and Microtus agrestis in
(a) spring 1972–2003 and (c) autumn 1971–2003, and (b)
owl density index, expressed as proportion (%) of nest boxes
with breeding attempts by Tengmalm’s owls (Aegolius
funereus), in spring 1980–2003.
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2002; Hörnfeldt 2004), the poorer wintering success and

long-term decline in vole numbers have clearly coincided

with the NAO-driven increase in winter temperatures in

recent years.

An important implication of the decline in vole

population densities in spring is the likely negative effects

on the reproduction and abundance of several specialist

predators (Strann et al. 2002; Hörnfeldt 2004). However,

very little detailed knowledge is available on this, owing to

the infrequency of parallel and quantitative long-term

monitoring of both vole and predator populations on the

breeding grounds in areas with decreasing vole popu-

lations (see also Bjørnstad & Grenfell 2001; Hörnfeldt

2004). The present time-series for density of a nest

box breeding population of Tengmalm’s owl (Aegolius

funereus), a nomadic vole specialist, in 1980–2003 in the

current vole monitoring area represents one of the few

exceptions (Löfgren et al. 1986; Hörnfeldt et al. 1990;

Hipkiss et al. 2002a,b). Two of the vole species, C. glareolus

and M. agrestis, are the staple food supply and make up

nearly 85% of the breeding season diet and strongly affect

the breeding success of this owl (Hörnfeldt et al. 1990;

Hipkiss et al. 2002a). We previously found that in the two

first 3–4 yr, high-amplitude cycles in 1980–86, the owl

density index was strongly correlated with the supply of

these voles in the previous autumn, but not with that in the
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current spring. On the other hand, clutch size and number

of fledglings per nest were correlated with the vole supply

in spring (Hörnfeldt et al. 1990). The aim of this report is

to analyse the long-term changes in the owl’s population

density and the predator–prey dynamics of owls and voles

along with decline in the vole populations.
2. MATERIAL AND METHODS
(a) Vole monitoring

Voles were snap-trapped in 58 regularly distributed 1 ha plots

in a range of habitats in a 100!100 km2 area (approx. 648N,

208E), for three consecutive nights in spring and autumn.

Fifty traps per plot were used, corresponding to 150 trap-

nights per plot, and on average 8475 trap-nights per sampling

period, totalling more than 530 000 trap-nights in

1971–2003. This running survey is carried out within the

Swedish Environmental Protection Agency’s National

Environmental Monitoring Programme1 (see also Hörnfeldt

1994, 2004, 2005).

(b) Owl monitoring

Nest boxes (range: 200–500) suitable for breeding Teng-

malm’s owls were regularly checked for occupant owls

between March and June, within the same area where voles

were trapped (approx. 648N, 208E). A breeding attempt was

defined as the laying of greater than or equal to one egg. An

owl breeding density index was expressed as percentage nest

boxes with breeding attempts. See also Löfgren et al. 1986,

Hörnfeldt et al. 1990 and Hipkiss et al. 2002a.
3. RESULTS
A marked decline in the breeding A. funereus population,

by about 75% with respect to peak densities, has gradually

occurred from the mid-1980s until the early 2000s

(figure 1b), in parallel with the decline in vole population

densities in spring and autumn from the mid-1980s and

onwards (figure 1a,c). Owl breeding density in 2001 was

significantly lower than in 1981 (figure 1b), i.e. at

comparable stages of the owl cycle and based on the

comparison of occupied versus non-occupied nest boxes

(c1
2Z105.5, p!0.001). For comparison, staple food

supply (C. glareolus and M. agrestis) in spring was

lower in 2001 than 1981 (tZ2.008, pZ0.047, nZ58;

cf. figure 1a), as was food supply in the previous autumn in

2000 compared to 1980 (tZ3.128, pZ0.002, nZ58; cf.

figure 1c). Also, low phase densities of the owl appear to

have become elevated since the mid 1980s (figure 1b).

A closer look revealed that the owl–vole relationships

changed in 1987–2003 compared to 1980–1986. In the

earlier period, the owl density index was highly

correlated with staple food supply in the previous autumn

(rsZ0.937, pZ0.002, nZ7), but less so with food supply

in the current spring (rsZ0.577, pZ0.175, nZ7;

Hörnfeldt et al. 1990). In contrast, in the later period

the correlation of owl density index with staple food supply

in the previous autumn was markedly weaker and

insignificant (rsZ0.459, pZ0.064, nZ17), while that

with food supply in spring was markedly stronger and

significant (rsZ0.790, p!0.001, nZ17), hence opposite

to the situation in 1980–86. For the pooled dataset, a

stepwise multiple regression of log-transformed owl

density indices (logOD, nZ24) revealed that, in all,

58% of the variation was explained by staple food
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Figure 2. Phase diagrams for owl density index in spring 1980–2003, expressed as proportion (%) of nest boxes with breeding
attempts by Tengmalm’s owls (Aegolius funereus), in relation to indices of staple food supply (pooled number of trapped
individuals per 100 trap-nights of Clethrionomys glareolus and Microtus agrestis), in (a–g) the previous autumn and (h–n) the
current spring, for successive cycles as denoted in the upper right corner. Shaded circles denote ends of successive cycles, dashed
lines transition to subsequent cycle, and arrowheads direction of change.
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supply, C. glareolus and M. agrestis, in the current

spring (FSCS; pZ0.001) and previous autumn (FSPF;

pZ0.005) according to the model: logODZ0.252C
0.559!FSCSC0.095!FSPF. Autocorrelation and par-

tial autocorrelation (not shown) revealed that remaining

residuals contained no significant temporal correlation.
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Like the longer vole time-series from 1970s to early

2000s, the owl time-series shows a gradual change in the

dynamics from the 1980s to early 2000s, from 3–4 yr,

high-amplitude cycles towards a mainly annual density

variation only (figure 1b). The temporal relationships

between owl density and vole supply in the previous
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autumn and current spring are also illustrated in the phase

diagrams for successive cycles in figure 2. The prevailing

phase pattern for the relationship between owl density and

vole supply in spring is an anti-clockwise spiralling (except

in 1994–1998), consistent with predictions from simple

predator–prey models (Begon et al. 1990). In contrast, the

patterns for the relationship between owl density and vole

supply in the previous autumn spiral in the opposite

direction, i.e. clockwise (except in 2000–2003). In both

cases, the phase diagrams for 2000–2003 (figure 2g,n)

reveal a similar pattern to that discernible from figure 1,

i.e. that the dynamics are approaching annual density

variation and even lower amplitudes.
4. DISCUSSION
Recent declines of other vole predator populations have

also been observed in Sweden. The arctic fox (Alopex

lagopus) has declined since around the mid-1980s

(Angerbjörn et al. 1995), and autumn counts at a

Scandinavian migration bottleneck at Falsterbo, southern

Sweden, have declined for the hen harrier (Circus cyaneus)

since the late 1970s and for the rough-legged buzzard

(Buteo lagopus) since the mid-1980s (Kjellén & Roos

2000). These predator declines have been ascribed to low

or declining small rodent populations, although without

being backed-up by quantitative estimates of current

rodent abundance. One important conclusion from this

and the present case is that they highlight the need for

long-term time-series, and stress the need for a stable and

persistent organization by authorities of long-term moni-

toring, and we hope that our study will help to encourage

the environmental monitoring of biological systems in

general.

The present vole–owl case is the first example we know

of from cyclic populations that has shown not only such a

remarkable long-term decline in density, but also a shift in

dynamics from pronounced multiannual, high-amplitude

vole–predator cycles towards more or less annual fluctu-

ations only (figures 1 and 2; but see Hanski & Henttonen

1996; Solonen 2004). Our finding of a shift in the relative

strength over time of the correlation of owl breeding

density with staple food supply in the previous autumn

(decreasing) and current spring (increasing) relates to

other studies reporting correlations with food supply in the

previous autumn and/or current spring (Korpimäki 1994;

Solonen 2004) or ensuing fall (Strann et al. 2002). It is

reasonable to assume that these different results are related

to differences in changes of vole numbers over winter in

different time periods and areas (see also Solonen 2004).

We believe that the population declines and the seemingly

ongoing transition from one dynamic state to another in

the same area, also occurring in association with the NAO

changes and ensuing elevation of winter temperature, is a

key to a deeper understanding of the fluctuations of vole,

lemming and predator populations. Our findings suggest a

strong capacity for abiotic factors to influence or govern

the type of predator–prey dynamics actually realized. They

emphasize the need to shift the focus from mainly invoking

biotic factors to also include abiotic factors, such as winter

conditions, for analysing and understanding the dynamics

of this type of predator–prey system (see also Stenseth

1999). The NAO-driven increase in winter temperature in

the current case is associated with an effect during the
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essentially non-reproductive season in winter on wintering

success of voles, and subsequently predator population

density. As the underlying NAO changes may be affected

by global warming (Hurrell et al. 2001), it is reasonable to

assume that the current decline in predator and prey

densities and the resemblance of a fading out of their

coupled predator–prey cycles are indeed early effects of

global warming. Let us assume that the decline in

numbers and change in vole and predator dynamics

from clear 3–4 yr, high-amplitude cycles towards mainly

annual density fluctuations are caused by adverse winter

conditions during the lengthy period dominated by

positive NAO-index values. Then, provided that no

other climatic force promotes similar winter instability, it

is possible to make a reasonable long-term prediction.

A shift back to lasting negative NAO-index values, causing

a return to colder winters, would increase vole wintering

success and lead back again towards a pronounced 3–4 yr,

cyclic dynamics of voles and, as a consequence, of their

predators.
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