Phosphorus management in a changing world: using models to build a bridge between science and policy

MN Futter, J Crossman, PG Whitehead
IPW
Sept 10, 2013
Acknowledgements

• Andrew Wade, Dan Butterfield, Li Jin, Helen Baulch
• Maria Castellazi, Bedru Belana (James Hutton Institute)

• UK Environment Agency for data collection
• All photos © riverthames.co.uk or nationaltrail.co.uk unless otherwise noted
• EU Eurolimpacs and REFRESH projects funded some parts of this project
Talk outline

• Setting the stage
• Thames and its catchment
• INCA-P model
• INCA-P simulation of SRP in Thames
• A changing world
• Scenarios
• Conclusions

© Jos Joslin
Models cannot provide answers, but they can help to frame a dialog about how to best manage in a changing world: EU legislative compliance, climate change, food and water security, legacy environmental issues, etc.
Managing phosphorus in a changing world is not only about agriculture
Thames River and catchment
Pressures on the Thames and its catchment

- WFD Compliance: eutrophication and hydro-morphological alteration
- Can GES be achieved?

- Drinking water supply for greater London (~14M people)
 - Summer low flows similar to abstraction rates
 - Aging, leaky infrastructure; lead pipes
- Food security
 - Agricultural catchment, arable (36%), livestock and pasture
INCA-P Factors affecting surface water P concentrations

• Climate (changing T, P and soil moisture)
• Hydrology
 • storm events & resultant changes in flow pathways affecting P transfer from land to stream
• Land Use and Management
 • sediment availability and transport
 • changes in crop cover
 • changes timing of P additions throughout the year
• Geochemistry
 • sorption and release of P to and from sediment;
 • in-stream P sources and sinks
 • accumulation and depletion of P in soils and groundwater
• Ecology
 • interactions between P and biology.
Dynamic, semi-distributed, daily time step model simulating total dissolved (TDP) and particulate (PP) phosphorus in the land, water column and stream bed. Soluble reactive P (SRP) simulated as a fraction of TDP.
Anthropogenic P sources modelled in INCA-P

INCA-P simulates agricultural, waste water treatment plant (WWTP) and atmospheric P inputs.
INCA-P modelled and observed flow and SRP at Lower Thames (22 - Teddington)
Changing world – UKTAG & WFD classification

Type (for existing standards)	Annual mean of reactive phosphorus (μg per litre)										
	High	Good	Moderate	Poor							
	Existing	New	Existing	New	Existing	New	Existing	New			
Lowland, low alkalinity	30	19	50	40	150	114	500	842 (752-918)			
	(13-26)	(28-52)			(87-140)						
Upland, low alkalinity	20	13	40	28	150	87	500	752 (752-851)			
	(13-20)	(28-41)			(87-117)						
Lowland, high alkalinity	50	36	120	69	250	173	1000	1003 (921-1098)			
	(27-50)	(52-91)			(141-215)						
Upland, high alkalinity	50	24	120	48	250	132	1000	898 (829-1012)			
	(18-37)	(28-70)			(109-177)						

New science (Aug 2013) is changing the target SRP concentrations for WFD class boundaries
Changing world - Peak phosphorus

Possible future climate

Warmer temperatures, increased winter rainfall and a likely decline in summer rain (left) may lead to higher winter and lower summer flows (above)
Drinking water demand was equal to river flow in summer 1976; Thames Water proposed a reservoir at Abingdon. The proposal was rejected in 2011; smaller reservoirs may be built.
UK food security

Today, arable agriculture occupies 36% of the catchment. Scenarios increasing % arable to 50 (Landuse 1) and 60% (Landuse 2) were evaluated. It was assumed that present day agricultural practices would be used.
Possible effects of a changing world on mean SRP in lower Thames
Possible P mitigation measures

- Reduce P losses from agricultural land
 - Reduced application rate
 - Use of buffer zones and riparian wetlands
 - Better livestock management

- Tertiary treatment at waste water treatment plants (WWTP)
 - Iron dosing to reduce P to 1 mg/l (required under EU Wastewater Treatment, WFD, Birds & Habitats Directives)
 - Enhanced technology using optimized dosing and ultrafiltration (currently not feasible in UK)

- Source control of P entering WWTP via sources other than natural diet
 - Domestic laundry cleaning products (to be banned by 2015)
 - Automatic dishwashing detergents
 - Tap water dosing for controlling lead in drinking water
 - Use of P in food additives
Mitigation scenarios

• Baseline – present day, business as usual
• 20% Fertiliser reduction, present day arable area
• PR 1 – P removal at WWTP to meet 1 mg/l discharge total P concentration
• PR 2 – P removal at WWTP to meet 0.3 mg/l discharge total P concentration
• 20% fertiliser reduction plus PR2
• Riparian buffer strips
Mitigation effectiveness under different scenarios

![Graph showing mitigation effectiveness under different scenarios.]
Projected SRP concentrations, Lower Thames

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Baseline</th>
<th>20% Fertiliser Reduction</th>
<th>PR-1</th>
<th>PR-2</th>
<th>PR-2 + 20% Fertiliser Reduction</th>
<th>Riparian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>187</td>
<td>149</td>
<td>154</td>
<td>145</td>
<td>97</td>
<td>186</td>
</tr>
<tr>
<td>Future CC</td>
<td>186</td>
<td>148</td>
<td>151</td>
<td>142</td>
<td>94</td>
<td>185</td>
</tr>
<tr>
<td>Land Use 1</td>
<td>232</td>
<td>178</td>
<td>198</td>
<td>189</td>
<td>122</td>
<td>231</td>
</tr>
<tr>
<td>Land Use 2</td>
<td>263</td>
<td>198</td>
<td>229</td>
<td>220</td>
<td>141</td>
<td>262</td>
</tr>
<tr>
<td>Reservoir + Future CC</td>
<td>185</td>
<td>146</td>
<td>156</td>
<td>147</td>
<td>99</td>
<td>184</td>
</tr>
<tr>
<td>Reservoir + Future CC + Land Use 1</td>
<td>229</td>
<td>171</td>
<td>203</td>
<td>195</td>
<td>123</td>
<td>228</td>
</tr>
<tr>
<td>Reservoir + Future CC + Land Use 2</td>
<td>261</td>
<td>187</td>
<td>235</td>
<td>227</td>
<td>139</td>
<td>260</td>
</tr>
</tbody>
</table>
Conclusions

• SRP concentrations have declined in the Thames
• New science leads to changes in management targets
• Achieving moderate WFD ecological status will be a challenge
• Climate change & reservoir may have limited effects on SRP concentrations
• Trade-offs are needed; lower SRP concentrations in WWTP discharge will allow some agricultural intensification
Key Papers

• Wade et al. 2007. Deliverable No. 185 The Integrated Catchment Model of Phosphorus (INCA-P), a new structure to simulate particulate and soluble phosphorus transport in European catchments