Implementation and verification of BMPs to reduce farm P loads: A long-term collaborative effort

Jehangir H. Bhadha, Ph.D Samira Daroub, Timothy Lang

> Uppsala, Sweden 11th September 2013.

The Everglades Agricultural Area

- 220,000 ha of organic soils with about 80% used to farm sugarcane.
- Flat topography, shallow soils and an impermeable marl/limestone.
- Soils are actively drained by pumping water through a system of farm and main basin canals.
- Water leaving the EAA is routed through STA to remove P before being delivered to WCA.

ERRD/EREG 19-Nov-2008 lursu\\dataserv\420\4260\gis\ever_gis\SFER2009\mxdfiles\eaaloc_sfer2009_lu.mxd

Crops of the EAA

- Main crop is Sugarcane
- Vegetables, sod, and rice also grown
- Annual value ~ \$2 billion

Soils in the EAA

- Histosol (organic soil)predominant soil order in the EAA
- Limestone bedrock- neutral to basic pH
- Soils were drained in the early 1900's for agricultural production
- Soil oxidation (subsidence)

Drainage Pumps

SFWMD Canal

Farm Canal

outside canal elevation

inside canal elevation

Drainage

The responsibility for supplying irrigation and removing excess water for the basin lies with the SFWMD.

Everglades Regulatory Program

- Concerns about P leaving the EAA in drainage water south to the Everglades ecosystem
- **Everglades Forever Act 1994**
- Goal of the regulatory program is to reduce P loads out of the EAA by 25% compared to a pre-BMP base period

BMP program started in 1995

Objective

 Determine long term trends in P concentrations and loads at the drainage outlet of EAA basin and associated four sub-basins after 10 years of implementing BMPs

Study Location

Methods

ERRD/EREG_19-Nov-2008 lursu\\dataserv\420\4260\gis\ever_gis\SFER2009\mxdfiles\eaaloc_sfer2009_lu.mxd

- <u>Study Areas</u> EAA basin, sub-basins (S5A, S6, S7, S8)
- <u>Statistical Analyses</u>
 - Seasonal Mann-Kendall trend analysis
- Data Set

EAA basin and sub basins monitoring program

 SFWMD monthly flow, flowweighted P concentrations, P loads 1992-2002

Basin Trend Results- Inflow from Lake Okeechobee

Basin	Months	Kendall K	z-Score	z-Prob	Trend						
Inflow Flow											
S5A	117	-267	-1.198	0.231	insignificant						
S6/7	117	-289	-1.299	0.194	insignificant						
S8	117	-715	-1.682	0.093	insignificant						
EAA Basin	117	-385	-1.728	0.084	insignificant						
Inflow Concentration											
S5A	105	1128	5.898	0.001	increasing						
S6/7	101	175	0.927	0.354	insignificant						
S8	117	-175	-0.783	0.434	insignificant						
EAA Basin	117	692	1.628	0.104	insignificant						
Inflow Load											
S5A	117	24	0.104	0.918	insignificant						
S6/7	117	-190	-0.853	0.394	insignificant						
S8	117	-425	-1.908	0.056	insignificant						
EAA Basin	117	-192	-0.860	0.390	insignificant						

EAA Basin Outflow Trend Results

Basin	Months	Kendall K	z-Score	z-Prob	Trend						
	Outflow Flow										
S5A	117	-772	-3.471	0.001	Decreasing						
S6/7	117	-545	-2.448	0.014	Decreasing						
S8	117	-330	-1.481	0.139	Insignificantt						
EAA basin	117	-599	-2.691	0.007	Decreasing						
	Outflow Concentration										
S5A	115	-1993	-4.815	0.001	Decreasing						
S6/7	115	388	0.935	0.35	Insignificant						
S8	117	-541	-2.43	0.015	Decreasing						
EAA basin	117	-745	-2.12	0.034	Decreasing						
Outflow Load											
S5A	117	-799	-3.592	0.001	Decreasing						
S6/7	117	-340	-1.526	0.127	Insignificantt						
S8	117	-584	-2.624	0.009	Decreasing						
EAA basin	117	-662	-2.975	0.003	Decreasing						

EAA Basin Performance

SFWMD, 2013

Communication with growers and their involvement is the key to success....

ВМР	PTS	DESCRIPTION			
WATER DETENTION ½ Inch Detained 1 Inch Detained	5 10	 water table management by controlling levels in canals, field ditches, soil profile, fallow fields, aquatic cover crop fields, prolonged crop flood; measured on a per event basis – rainfall vs. runoff 			
FERTILIZER APPLICATION CONTROL	2 1⁄2	uniform and controlled boundary fertilizer application (e.g. direct application to plant roots by banding or side-dressing; pneumatic controlled-edge application such as AIRMAX)			
FERTILIZER CONTENT CONTROLS					
Fertilizer Spill Prevention	2 1⁄2	 formal spill prevention protocols (handling and transfer) side-throw broadcast spreading near ditch banks 			
Soil Testing	5	avoid excess application by determining P levels needed			
Plant Tissue Analysis	2 1/2	avoid excess application by determining P levels needed			
Split P Application	5	apply small P portions at various times during the growing season vs. entire application at beginning to prevent excess P from washing into canals (rarely used on cane in EAA)			
Slow Release P Fertilizer		avoid flushing excess P from soil by using specially treated fertilizer which breaks down slowly thus releasing P to the plant over time (rarely used in EAA)			
SEDIMENT CONTROLS		EACH SEDIMENT CONTROL MUST BE CONSISTENTLY IMPLEMENTED OVER THE ENTIRE ACREAGE			
Any 2 Any 4 Any 6	2 ½ 5 10	 leveling fields ditch bank berm sediment sump in canal strong canal cleaning program field ditch drainage sump slow field ditch drainage near pumps sump upstream of drainage pump intake cover crops raised culvert bottoms veg. on ditch banks other BMP 			
OTHER Pasture Management		reduce cattle waste nutrients in surface water runoff by "hot spot" fencing, provide watering holes, low cattle density, shade, pasture rotation, feed & supplement rotation, etc.			
Improved Infrastructure	5	uniform drainage by increased on-farm control structures			
Urban Xeriscape	5	lower runoff & P by using plants that require less of each			
Det. Pond Littoral Zone	5	vegetative filtering area for property stormwater runoff			
Other BMP Proposed	TBD	proposed by permittee and accepted by SFWMD			

EAA BMP Table

- Minimum 25 points needed
- Typical BMP farm permit includes:
 - water detention
 - fertilizer spill prevention
 - fertilizer application control
 - sediment controls

Fertilizer Controls

Water Controls

*****	*** 2501/7				10000	Antia Con	i and	8				MONTH-	-/gacu - 2003
DRAMAGE DAME:				110pt 1000pt - 13111348 110pt 1000 pt - 200 110pt 1000 pt - 200				04002			PAGE 2		
	-		CENTER	100,000 000					1	PM -			
-	1444	1000	00000	0,000 BAC	14		04000F	SALES!	Puter 1007	POORE NO	-	And AL	CONNENTS
	-	-	-	-	-	1.1.1.1.1.1	100000		_	-		0	
2	-			-					-			0	
3	-								-	-		0	
4		-		-					1			0	
8		-	-	-								0	
		-		-						-	-	0	
1	-	-	-	-							-	0	
		-							1		-	0	
	-	-									_	0	
10	10:51	1078	1.60	10.40		-				-	-	0	
11	-	-	-		07:15	1076	6.30	10.90	-	-	-	0	
12					-	-				-	-	0.15	
12	-						-				-	0	
14							-					0.24	
10									-			0	
18.	-	_				-			-	_	_	0	
17	07/10	1180	7.90	11.00	-				_	_	_	1.30	
18	16:10	1160	7.00	1.30	67:00	1/10	6.20	10.70	-		-	1.00	
18	13:00	12.77	9.70	10.70	07.47	/2 72	6.90	9.60	_	_	_	10	
20	101.70	1230	2.90	10.20	-			1.00	-	-	-	0.10	
21	15:31	1270	7.00	10.40	2.00	1934	6.64			_	_	0	
12		-	_	-	actions.	1019	95.70	10.60	-		-	0.10	
	13:45"	1010	7.40	9.00		-	-		-	-	-	0	
22	0710d	1084	6.90	10.20	-						-	1.20	
24	22:30	1080	6.50	11.19	-		-	-		_	-	0.20	
25_	03:15"	1087	5.90	9.60	-	-	-				_	0	
26	177:15.	1086	4.99	/0.88	-	1000				_		0	
17	07:30	118/	6.90	10.40	1.4	1010	5.40	7.80	-			0.10	
28	04197	1/11	1.00	11.60	-	-		-		11		2.00	
29	07:00'	1122	1.00	12.00	-	-	-		_				
-	19:10	1139	6.10	10.60	1		-	-				0	

Sediment Controls

Conclusions

- BMP program since inception has been a success
- Basin P load reductions have averaged >50% compared to baseline period
- Trend analysis confirmed decreasing P loads at the farm level and at the basin level
- Farm trend differences likely due to crop, management, irrigation water quality and environmental factors

Current Research Initiatives

Our goal is to transform canals by implementing BMPs which would reduce floating aquatic vegetation and subsequent buildup of organic sediments from occurring in the farm canals.

CANAL WITH HIGH FLOATING AQUATIC VEGETATION

CANAL WITH NO FLOATING AQUATIC VEGETATION

Current Research Initiatives

BMP Training

Twice Yearly Sessions

- September 27, 2012 -117 Participants
- April 11, 2012 -115 Participants
- September 26, 2013

Training evaluation feedback:

- modify and/or add BMP topics
- modify content of training modules

Speaker	Presentation Title					
Samira Daroub, PhD	Everglades Program Chapter 40E-63, F.A.C.					
Timothy Lang, PhD	BMP Research Update					
Paul Grose, MS	Grower's Experience with BMPs					
Jehangir Bhadha, PhD	Nutrient Cycling in South Florida					
Les Baucum, MS	Wise Use of Atrazine and Ametryn					
Doug Pescatore, MS	EAA Basin Phosphorus Loads					
Bill Donovan, PhD	BMP Verification Methodology					
Lyn Gettys, PhD	Managing Aquatic Weeds in Farm Canals					
Tom MacVicar, MS	What's Going On With Lake Okeechobee?					
Barry Glaz, MS	Sugarcane Production and BMPs					
Mike Jerauld, MS	Stormwater Treatment Areas Research					
Kim O'Dell, PhD	Alternative Treatment Technologies					
Mark Howell, BS	Pumping/Discharge Methods					

