Uncertainty Analysis in a Field-scale P Loss Model

Carl H. Bolster USDA-ARS, Bowling Green, KY

Peter A. Vadas USDA-ARS, Madison, WI.

JEQ 42:1109-1118 (2013)

Sources of Model Uncertainty

- Model structure error
 - All models are approximations
 - "All models are wrong, some are useful"
- Model parameter error (Generally obtained through calibration)
 - Incorrect optimization targets
 - Inaccurate, incomplete, or unrepresentative calibration data
- Model input error (variables such as rainfall, soil test P)
 - Measurement errors
 - Unrepresentative values

Sources of Model Uncertainty

- Model structure error
 - All models are approximations
 - · "All models are wrong, some are useful"
- Model parameter error (Generally obtained through calibration)
 - Incorrect optimization targets
 - Inaccurate, incomplete, or unrepresentative calibration data
- Model input error (variables such as rainfall, soil test P)
 - Measurement errors
 - Unrepresentative values

ARS Home | USDA.gov | Site Map | Policies and Links FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House Last Modified: 05/03/2011

Objective:

Evaluate model predictions when uncertainties in both model output and measurements are included

How large are the errors?

Do uncertainties help in model evaluation?

APLE input model variables

P Loss Pathway				
DP _{man}	DP _{fert}	DP _{soil}	P _{sed}	
Runoff/Precip	Runoff/Precip	Runoff	Soil Loss	
Total manure applied	Total P applied	Labile P	Labile P	
Percent manure solids	Percent fertilizer incorporation		Soil clay content	
Manure TP			Soil organic	
content			matter content	
Water extractable				
Р				
Percent manure				
incorporation				
Mineralization				
rate				

Assumed Errors in Model Input Variables

Model Variable	Small Uncertainty	Large Uncertainty
Runoff (weir)	± 5%	± 10%
Runoff (direct)	± 1%	± 3%
Erosion	± 2.5%	± 5%
Manure mineralization	± 2.5%	± 5%
P incorporation rates	± 5% (constant)	± 10% (constant)
All other variables	± 5%	± 15%

Based on Harmel et al. 2006

Assumed Errors in Measured P Loads

Model Variable	Small Uncertainty	Large Uncertainty
Sample collection	± 5%	± 15%
Sample preservation	± 5%	± 15%
Laboratory analysis	± 5%	± 20%
Contributing area	± 2%	± 5%
Total Error in P Loads	± 9%	± 29%

Based on Harmel et al. 2006

Correlations between predicted and observed P loss

Small Uncertainty

CI range \pm 3.5 x10⁻⁵ to 2.8 kg/ha

CI range ± 2 to 32 %

overlapping CIs
66 out of 255

Large Uncertainty

CI range \pm 9.4 x10⁻⁵ to 6.4 kg/ha

CI range \pm 6 to 64 %

overlapping CIs
156 out of 255

Distributions of absolute and relative errors for model predictions

Goodness-of-fit statistics

Statistic	No uncertainty	Small	Large
		uncertainty	uncertainty
E	0.71	0.71	0.72
RMSE, kg P ha ⁻¹	1.84	1.84	1.82
MAE, kg P ha ⁻¹	0.88	0.87	0.83
MAPE, %	59.1	58.8	57.0
# of overlapping CIs		65	155

Conclusions

- Uncertainties in model predictions are a fact of life
- $\cdot\,$ Ignoring them may do more harm than good
- Uncertainties in model predictions can help us better evaluate our models
- As modelers it is our responsibility to faithfully present the limitations with our model predictions to our audience

Questions?

FOA Method

 Calculates variance in model output as product of input variable variance and sensitivity of model output to changes in that variable

$$\sigma^{2}(\boldsymbol{\Theta}) = \sum_{i=1}^{k} \left(\frac{\partial \boldsymbol{\Theta}}{\partial I_{i}}\right)^{2} \cdot \sigma^{2}(I_{i})$$

$$\frac{\partial \Theta}{\partial I} \approx \frac{\Theta_{I+\Delta I} - \Theta_{I-\Delta I}}{2\Delta I}$$

θ is model outputI is model input variable

MCS Method

- Model input variables are selected randomly from a pre-defined distribution (triangular)
- \cdot The model is run, and the output is stored.
- The process is repeated numerous times
- Statistical distributions of the output ensemble are used to assess uncertainty in model output.

95% confidence intervals for MCS

Methods

- Simulated P loss from two different field conditions:
 - DRP from soil, particulate P loss, DRP from fertilizer
 - DRP from soil, particulate P loss, DRP from manure
- Four error ranges:
 - $\cdot \pm 5\%, \pm 15\%, \pm 25\%, \pm 50\%$
 - Triangular distribution

Triangular vs Normal distribution

Objective 1:

Compare First-Order Approximation (FOA) method with Monte Carlo Simulation (MCS) Method using APLE

% Differences in CIs between MCS and FOA: <u>P loss from STP, erosion, and fertilizer P</u>

% Differences in CIs between MCS and FOA: <u>P loss from STP, erosion, and manure P</u>

Correlations between predicted and measured P loss

Sensitivity Coefficients

Objectives

- 1. Conduct sensitivity analysis with all APLE input variables
 - Help identify which input variables require most accurate measurements
- 2. Evaluate model predictions when uncertainties in both model output and measurements are included

Objective 1:

Sensitivity Analysis of APLE Input Variables

Relative Sensitivity Coefficient

· Dimensionless parameter that measures how sensitive model output (θ) is to a given change in model input (I)

$$\mathbf{S}_{\mathrm{r}} = \frac{\partial \Theta}{\partial I} \frac{I}{\Theta}$$

$$\frac{\partial \Theta}{\partial I} \approx \frac{\Theta_{I+\Delta I} - \Theta_{I-\Delta I}}{2\Delta I}$$

θ is model outputI is model input variable

Sensitivity Coefficients

Model Variable	Variable Range	$\mathbf{S}_{\mathbf{r}}$ mean and range
	DP _{soil}	
Runoff, mm	10 - 500	1.0
Labile soil P, mg kg ⁻¹	10 - 400	1.0
	DP _{man}	
RO/PT, %	1 – 35	1.2
Manure application rate, kg ha-1	$2.2 \text{ x } 10^2 - 5.6 \text{ x } 10^4$	1.0
Solid content of manure, %	5 – 75	$1.2~(1.0,~9.3)^{\dagger}$
P content of manure, %	0.1 – 5	1.0
WEP content of manure, %	25 - 75	0.76 (0.51, 0.93)
Manure incorporation rate, %	10 - 90	-1.5 (-9.0, -0.11)
	DP _{fert}	
RO/PT, %	1 – 35	1.8 (1.3, 2.2)
Fertilizer application rate, kg ha ⁻¹	20 - 300	1.0
Fertilizer incorporation rate, %	10 - 90	-1.5 (-9.0, -0.11)
	P _{sed}	
Erosion rate, kg ha ⁻¹	$22 - 5.6 \ge 10^4$	0.93 (0.75, 1.0)
Labile P, mg kg ⁻¹	10 - 400	0.19 (-0.30, 0.80)
Clay content, %	0.1 – 50	0.19 (0.10, 0.59)
Soil organic matter, %	0.1 – 10	0.46 (0.02, 2.2)

Objectives

- 1. Test whether the first-order approximation method can provide accurate estimates of confidence intervals for APLE predictions
 - Compare results with Monte Carlo simulations
- 2. Conduct sensitivity analysis with all APLE input variables
 - Help identify which input variables require most accurate measurements
- 3. Evaluate model predictions when uncertainties in both model output and measurements are included

JEQ 42:1109-1118 (2013)