

Sorbents for phosphate removal from agricultural drainage water

Lyngsie, G.¹, Penn, C²., Borggaard, O.K.¹, Hansen, H.C.B.¹

¹University of Copenhagen, Department of Plant and Environmental Sciences

²Oklahoma State University, Department of Plant and Soil Sciences

Acknowledgment

This work was done in collaboration between Oklahoma State University and University of Copenhagen

Funded by The Danish Council for Strategic Research (grant no. 09-067280) and University of Copenhagen

The PhD project is a part of the SupremeTech project

SupremeTech

Phosphate Sorbing Material (PSM)

Find PSM that can work in an **aerobic environment** with **low and variable phosphate conc.** and **pulse-flows**

PSM need to possess a:

- High phosphate capacity and affinity,
- Reacts fast
- Retain phosphate it has sorped

What affect a PSM:

- Active sorbent (e.g. AI, Fe, Ca and Mg)
- Specific surface area (particle size, shape, porosity, and crystallinity)
- pH
- Inlet P concentration
- Reaction time

Screening

15 materials

• Diatomatic earth (CDE), CFH-12, limestone, Filtralite-P, Shell-sand, seven different LECA etc.

4 fractions

- < 0,5 mm >0,05 mm
- < 1 mm > 0,5 mm
- <2 mm > 1
- < 4 mm >2 mm

Filter characteristics

- Chemical composition
- Different pools of Fe/AI, Ca/Mg, P
- Specific surface area (BET)
- XRD

Batch experiments

- Sorption isotherms \rightarrow P conc. 0-161 µM contact for 24 min
- Kinetics \rightarrow Contact periods for 1½, 3, 6, 12 and 24 min
- Desorption \rightarrow four treatments with electrolyte 15 min each

Isotherms examples

C. J. PENN ET AL.

More detailed understanding of two best PSM Flow-through setting

The **objective** of this study were to investigate how retention time and P concentration affect P sorption in regard to capacity and affinity

Experimental set up

0.1-2 g material mix with pure quartz sand

Fe-ox based **CFH** (2-1 mm and 1-0.5 mm) CaO based **Filtralite-P** (4-2 mm, 2-1 mm, and 1-0.5 mm)

- 4 P inlet concentrations made from KH₂PO₄
 - 1.6 and 3.2 µM– base flow
 - 16 and 32 µM peak flow
- 6 Retention times (RT)
 - 1/2, 1, 11/2, 3, 6, and 9 min
- 5 h flow sorption outflow was sampled every 1/2 h
- 2 h flow **desorption** with P free solution (6 mM KNO3)
- Outflow solutions were analyzed MR molybdate blue method
- Triplicates Total of 360 experimental units
 IPW7
 Dias 7

Example of flow-through sorption curve - inlet 16 μ M, RT 1½ min

If local sorption maximum is not achieved we model

Fitting of flow-through data

Hyperbolae model:

Cumulative sorbed
$$Pi = LSS \frac{f \cdot c \cdot t/m}{(K + f \cdot c \cdot t/m)}$$

 $f \cdot c \cdot t/m = P added$

- f is flow rate (L min⁻¹),
- c is Pi inlet concentration (µmol L⁻¹),
- t is time (min) and
- *m* is mass (kg)

LSS = Local Sorption Saturation (μ mol kg⁻¹) inlet = outlet

K =slope curve and is a measure of affinity

RT and inlet conc. were tested with one-way ANOVA

Sorption 2-1 mm fractions

Filtralite-P

IPW7

Dias 10

Example of flow-through desorption results

Log modified logistic model:

Cumulative Pi desorbed = $\frac{RDM}{(1+D\cdot(f\cdot t/m)^d)}$

- f·t/m = electrolyte added
- RDM is the Relative local Desorption Maximum (% of the previously sorbed P)
- D is a measure of the lag phase and
- d is the slope of the curve

Desorption 2-1 mm fractions

Key findings sum-up

In regard to phosphate sorption in an **aerobic environment** with **low P conc.** and **pulse-flows** my results clearly states that a Fe-oxide system would be preferable

- i. Higher capacity
- ii. Shows highest affinity towards P also a low P conc.
- iii. Sorbs faster than Ca based systems
- iv. Sorbs stronger (little desorption)
- v. The sorption seem less sensitive to pH and solution

composition

Thank you for your attention!

