The comparative cost efficiency of three buffer zone programs to reduce phosphorus losses in a small Swedish catchment

Dennis Collentine,* Holger Johnsson, Kristian Persson, Hampus Markensten and Peter Larsson (SLU WaterHUB**)

*Contact author: dennis.collentine@slu.se **SLU WaterHUB http://www.slu.se/en/collaborative-centresand-projects/slu-water-hub/

VattenNAV

BACKGROUND

- Increasing eutrophication of the Baltic Sea
- Of the total anthropogenic phosphorus loads from Sweden, 40% originate from farmland
- Riparian buffer zones are the only measure which has been used extensively in Sweden to reduce phosphorus losses from agricultural land
- Supported by payments to landowners from the EU Rural Development Program (RDP)
- Uneven and low participation in the program

Agri-environmental program evaluation

- "Is agri-environment support well designed and managed?" EU Court of Auditors (2011)
- Report recommendations to the EU Commission:
 - agri-environmental expenditures should be more precisely targeted;
 - there should be a higher rate of EU contribution for sub-measures with a higher environmental potential;
 - there should be a clear distinction between simple and more demanding agri-environment sub-measures;
 - and that the Member States should be more proactive in managing agri-environment payments.

Why aren't programs targeted?

- Uniform payments are easy and accepted by:
 - Swedish Board of Agriculture and Ministry
 - Program administrators (County boards)
 - EU (and WTO)
 - Farm lobby groups (fairness)
- There is also a common belief that efficiency gains from targeting will be equal to or less than the the higher costs of administering targeted programs

Transaction costs

- Costs for entering into a contract (*ex ante* and *ex post*)
- Include costs of information, contracting and control
- There has been little attention paid to how to reduce transaction costs to increase efficiency.
- One of the reasons for the lack of attention has been the difficulties associated with calculating these types of costs.

Model support for lowering the transaction costs of targeting

- Current support for buffer zones in Sweden; uniform payments, for buffer zones to reduce P losses (biodiversity), voluntary participation (6-20 meters wide zones along water courses)
- Assignment in 2012 from the Swedish National Water Authorities to SLU WaterHUB to develop a model for high resolution evaluation of buffer zone cost efficiency
- Result: FyrisSKZ

FyrisSKZ: Assignment

- Develop a tool which will be able to estimate and summarize the cost effectiveness of buffer zones along lakes, watercourses and drainage ditches in the 12,864 sub-catchment areas of Sweden.
- Develop a web application to make this information available to users.

FyrisSKZ: Construction features

- Use of GIS to calulate the cultivated area contributing to P losses from agricultural land around lakes and watercourses (impact area)
 - 60 meter wide zone of agricultural land (blocks) along water courses (min 30 meters running length)
- Use of the FyrisCOST model to estimate the effects of buffer zones on the impact area (reduction in P losses).
- Use of opportunity costs for taking agricultural land out of production, and the costs for construction and maintenance of the buffer zone

VattenNAV

FyrisSKZ: Model structure

GIS impact area; purple areas

VattenNAV

FyrisCOST (DSS)

- The effect of abatement measures is calculated from available databases which include high resolution climate data, land use data, hydrological data, crop types, soil types, soil P levels, land elevations (gradient toward the watercourse) and buffer zone widths.
- Models included in FyrisCOST:
 - NLeCCS (ICECREAMDB, SOILNDB)
 - FyrisNP (Fyris)

FyrisCOST:

http://www.slu.se/en/collaborative-centres-and-projects/slu-water-hub/

Reduction effect: Buffer zone width on one soil type, three gradients

Buffer zone costs

- Construction and maintenance costs uniform for all production areas
- Evaluation of opportunity costs for land use in eight production zones
 - based on leasing prices for agricultural land (90th percentile)
 - data from Swedish Board of Agriculture

Cost per hectare for income loss from buffer zones (90%)

PO8	€cost/yr
1.GSS	719
2.GMB	462
3.GNS	347
4.SS	239
5.GS	239
6.MSS	148
7.NN	114
8.ÖN	95
Sweden	458

SLU Web Application: http://fyrisskz.slu.se/haro/

SV 🔺 🍡 📑 🕪 2013-08-21

Web Application: Selected catchment area

med vänster musknapp

information

Håll muspekan över en rubrik i tabellen för mer

VattenNAV

FyrisSKZ: Results table - inputs

Catchment name	Subcatchment ID	Subcatchment area (km ²)	Runoff (mm/yr)	Agricultural area (%)
Svärtaån	652798-157219	42.0	239.67	32.642
Pasture area (%)	Soil type	Phosphorus class (1-3)	Slope class (1-3)	Impact area (ha)
18.4	Silty Clay	3	3	303
Impact area along watercourse (km)	Possible buffer zone length (km)	Land opportunity cost (SEK/ha)		Area of support 2008 (ha)
57.23	40.25	2033		13.17

VattenNAV

FyrisSKZ: Results table - outputs

Reduction 2m (kg P/ha)	Reduction 6m (kg P/ha)	Reduction 10m (kg P/ha)	Reduction 15m (kg P/ha)	Reduction 20m (kg P/ha)
2.52	1.42	1.06	0.81	0.66
Potential reduction 2m (kg P)	Potential reduction 6m (kg P)	Potential reduction 10m (kg P)	Potential reduction 15m (kg P)	Potential reduction 20m (kg P)
20.28	34.25	42.84	48.92	53.43
Reduction cost 2m (SEK/kg P)	Reduction cost 6m (SEK/kg P)	Reduction cost 10m (SEK/kg P)	Reduction cost 15m (SEK/kg P)	Reduction cost 20m (SEK/kg P)
807	1433	1910	2509	3063

FyrisSKZ: Application

- Svärta River catchment area
- Three program scenarios

The Svärta river catchment

- located in central Sweden south of Stockholm
- total land area 345 km²
- 25% is used for agriculture (9000 ha) with 7500 ha of this in crop production
- two dominant soil types in the catchment silty clay loam (80%) and silty loam.
- majority of the soil has a high soil P concentration and is erosion sensitive
- 14 sub-catchment areas

Buffer zone program scenarios

- Scenario 1: Baseline data from RDP 2008, buffer zone areas by sub-catchment, PLC5 average for 10 meter wide buffer zones.
- Scenario 2: Buffer zones on all potential area, 6m wide
- Scenario 3: Efficient allocation of buffer zones (max width for each sub-catchment where the cost/kg P reduction is less than € 172/kg P).

VattenNAV

Scenario results

	Scenario 1	Scenario 2	Scenario 3
Buffer zone area (ha)	162	110	*71.5
Total reduction (kg P)	97.2	124.5	102
Average reduction (kg p/ha)	0.6	1.13	1.42
Cost per ha buffer zone	234	234	234
(€/ha)			
Total cost (€)	37 922	25 740	16 731
Cost/kg P reduction (€/kg P)	390	207	163

* Scenario 3 results: 6 sub-catchments with 6m wide zones

Scenario results

- Targeting improves cost effectiveness
- Is Scenario 3 the most efficient?
 - No, just more cost efficient per kg P reduced than the other two scenarios evaluated. There are many more scenarios!
 - No transaction costs are included. Would these be higher than for uniform costs? Probably.

Who will use the results?

- Allows for targeted evaluation
 - Programs (ex ante and ex post)
 - Individual measures (for example as trading offsets)
- But uniform payments are easy and accepted by:
 - Swedish Board of Agriculture and Ministry
 - Program administrators (County boards)
 - EU (and WTO)
 - Farm lobby groups (fairness)
- Who will change their policy? How? Why?

