FRESHWATER CENTRE



### Agriculture is a major contributor to Fe losses





Agricultural rivers: 6.1–6.5% Fe in total suspended solids (Mäkiaho 2007)



**Eroded soil** 

# Phosphorus release from Fe oxides2. Chemical Fe reduction*"Sulphate-mediated eutrophication"*



Algae **PO**<sub>⊿</sub>  $\bigcirc \bigcirc$  $SO_4$  is reduced by microbes to  $HS^-$  or  $H_2S$  $CH_3COO^- + SO_4^{2-} \rightarrow 2 HCO_3^- + HS^-$ Dominates when: FeOOH~PO Fe(III) oxides consumed Plenty of labile organic C Sediment surface is anoxic

FeS

SYKE

# What is a sulphidic system?

| Site                          | SO <sub>4</sub><br>(mg I <sup>−1</sup> ) |
|-------------------------------|------------------------------------------|
| Sea water                     | 2400                                     |
| The Baltic Sea (off Helsinki) | 500                                      |
| Lake Pyhäjärvi                | 9.6                                      |
| Lake Pielinen                 | 2.5                                      |

 SO<sub>4</sub> concentration in runoff increases with field percentage (Mattsson et al. 2007)



SYKE

Mattsson T, Kortelainen P. Lepistö, Räike A. 2007. Organic and minerogenic acidity in Finnish rivers in relation to land use and deposition. Science of the Total Environment 383:183-192.

SYKE

# The experiment

Sandy clay soil (60–1000 mg ) (a) 80 ml brackish water medium (–P) + SO<sub>4</sub> (b) 80 ml filtered Baltic Sea water + acetate (0.375–24 mg C) + 10 μl sediment

#### Incubation on a shaking table

- At dark
- (a) +10 C, (b) +8 C
- (a) 308 d, (b) 745 d

#### Determinations

 Fe(II), Total Fe, DRP, TOC, SO<sub>4</sub>, NH<sub>4</sub>, pH



# **Mineralization processes in the experiment**





# Phosphorus release as a function of carbon added



SYKE



Carbon (mg)

## Conclusions

- Release of P from soil can be enhanced by organic C and simulating a highly reducing environment
- The approach may serve as an alternative method for estimating the potentially mobile P
- Eroded soil is a major potential P source in sulphidic and eutrophic systems, such as the Baltic Sea or SO<sub>4</sub>-rich lakes
- $\rightarrow$  The load of P, N (and in freshwaters SO<sub>4</sub>) should be reduced
- Prelease?
  Prelease?
  Prelease
  Prelease<
- ? What P form (PP/DRP) should be reduced?

*How to manage that field plot?* 

# Thank you!