Ny sökning
TN0354

Hållbar teknik för låg- och medelinkomstländer

Kursens mål är att ge kunskap och förståelse för agrara teknologier för hållbar utveckling och resursutnyttjande i låg- och medelinkomstländer. Kursen tar upp deltagande forskning, socio-ekonomiska aspekter av hållbar utveckling inklusive resiliens och genderperspektiv, liksom mekanisering, tekniköverföring och resurshantering. Kursen inleds med föreläsningar och övningar som behandlar småskalig förnybar energiteknik, småskaliga teknologier för avfall och sanitet, transport-, logistik- och försörjningskedjor för resurseffektivitet i både landsbygd och urbana sammanhang, samt markvård och odlingssystem. Därefter genomförs ett projekt där ett case (t.ex. en by) studeras som ett system där studenterna analyserar resursflöden och presenterar teknik- och hanteringslösningar för bättre hållbarhet och resurseffektivitet.

Kursvärdering

Kursvärderingen är avslutad

TN0354-10408 - Sammanställning av kursvärdering

Efter att kursvärderingen stängt har kursansvarig och studentrepresentanten upp till en månad på sig att skriva kommentarer. De publiceras automatiskt i sammanställningen.

Andra kursvärderingar för TN0354

Läsåret 2024/2025

Hållbar teknik för låg- och medelinkomstländer (TN0354-10293)

2024-09-02 - 2025-01-19

Läsåret 2022/2023

Hållbar teknik för låg- och medelinkomstländer (TN0354-10210)

2022-08-29 - 2023-01-15

Läsåret 2021/2022

Hållbar teknik för låg- och medelinkomstländer (TN0354-10221)

2021-08-30 - 2022-01-16

Läsåret 2020/2021

Hållbar teknik för låg- och medelinkomstländer (TN0354-10253)

2020-08-31 - 2021-01-17

Kursplan och övrig information

Litteraturlista

Introduction to sustainable development in low- and medium income countries
o Mihelcic, J. R., Fry, L. M., Myre, E. A., Phillips, L. D., & Barkdoll, B. D. (2009, September). Field guide to environmental engineering for development workers: Water, sanitation, and indoor air. American Society of Civil Engineers.
Sustainable Development and participatory research
o Keahey, J. (2021). Sustainable development and participatory action research: a systematic review. Systemic Practice and Action Research, 34(3), 291-306.
Sustainable development and appropriate technologies
o Robert, K. W., Parris, T. M., & Leiserowitz, A. A. (2005). What is Sustainable Development? Goals, Indicators, Values, and Practice. Environment: Science and Policy for Sustainable Development, 47(3), 8–21. Doi: https://doi.org/10.1080/00139157.2005.10524444
o Kuhlman, T., & Farrington, J. (2010). What is Sustainability? Sustainability, 2(11), 3436–3448. Doi: https://doi.org/10.3390/su2113436
o Patnaik, J., & Bhowmick, B. (2018). Appropriate Technology: Revisiting the Movement in Developing Countries for Sustainability. International Journal of Urban and Civil Engineering, 12(3), 308–312.
o Lohri, C. R., Rajabu, H. M., Sweeney, D. J., & Zurbrügg, C. (2016). Char fuel production in developing countries – A review of urban biowaste carbonization. Renewable and Sustainable Energy Reviews, 59, 1514–1530. doi: https://doi.org/10.1016/j.rser.2016.01.088
o Pages 8-10 from: Zabaleta, I., Bulant, N., Pfyffer, B., Rohr, M., Ivumbi, E., Mwamlima, P., Rajabu, H., & Zurbrügg, C. (2018). Pyrolysis of Biowaste in Low and Middle Income Settings. A Step-by-Step Manual. External: https://www.eawag.ch/fileadmin/Domain1/Abteilungen/sandec/publikationen/SWM/Carbonization_of_Urban_Bio-waste/slow_pyrolysis_manual.pdf
Small-scale transport technologies, logistics and value chain management
Post-harvest technologies (PHT) and value chain
o Hall, D. W., & Food and Agriculture Organization. (1970). Handling and storage of food grains in tropical and subtropical areas. Food and Agriculture Organization of the United Nations: 
Chapter 3: Losses of stored food 
Chapter 4: Factors affecting food value and deterioration 
Chapter 6: Drying methods
Draught animal power as source of energy
o Gebresenbet, G., Gibbon, D., Astatke, A. (1997). Draught Animal Power: Lessons from past research and development activities in Ethiopia and indicators for future needs. IRDC Currents,13/14, 1997, Wikstroms, Uppsala.
o O'Neill, D.H., & kemp, D.C. (1989). A comparison of work outputs of draught oxen. Journal of Agricultural Engineering Research, 43, 33-44. doi: https://doi.org/10.1016/S0021-8634(89)80004-6
o Lawrence, P. R. & Pearson, R. A. (1989). Measurement of Energy Expenditure in Working Animals: Methods for Different Conditions. Draught animals in rural development, 155-165. External: https://ageconsearch.umn.edu/record/134382/files/PR027.pdf#page=153
Sustainable resource management: water, wastewater and solid waste
Water resource management
o Chandra S.P. Ojha, Rao Y. Surampalli, Andres Bardossy, Tian C. Zhang, Chih-Ming Kao (2017). Sustainable Water Resources Management. American Society of Civil Engineers; ISBN: 9780784414767. 
o Hanamant M. Halli, Veeresh Hatti, Gaurendra Gupta, M Raghavendra, Mahendra Prasad Meena, Raghavendra Gouda (2022). Chapter 7 - Scientific approaches for water resources management in developing countries, Editor(s): Arun Lal Srivastav, Sughosh Madhav, Abhishek Kumar Bhardwaj, Eugenia Valsami-Jones, Current Directions in Water Scarcity Research, Elsevier, 6:129-147. https://doi.org/10.1016/B978-0-323-91838-1.00017-8
Waste management
o World Health Organization. Regional Office for Europe. (‎1996)‎. Municipal solid waste management in middle- and lower-income countries : report. Copenhagen : WHO Regional Office for Europe. https://apps.who.int/iris/handle/10665/108115
o Mor, S., & Ravindra, K. (2023). Municipal solid waste landfills in lower-and middle-income countries: environmental impacts, challenges and sustainable management practices. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2023.04.014
o Massoud M, Lameh G, Bardus M, Alameddine I. Determinants of Waste Management Practices and Willingness to Pay for Improving Waste Services in a Low-Middle Income Country. Environ Manage. 2021 Aug;68(2):198-209. doi: 10.1007/s00267-021-01472-z. Epub 2021 Apr 28. PMID: 33912998.
o Kaza, S., Yao, L., Bhada-Tata, P., Woerden, F. V., & Ionkova, K. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. Overview. Washington, DC: World Bank Group. doi: https://doi.org/10.1596/978-1-4648-1329-0
Wastewater management
o Tilley, E. (2014). Compendium of sanitation systems and technologies. Eawag. Full version available: https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/454
o Sasse, L. (1998). DEWATS: Decentralised wastewater treatment in developing countries. BORDA, Bremen Overseas Research and Development Association. External: https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/1933
Safe technologies for nutrient recycling
o Mcconville, J., Niwagaba, C., Nordin, A., Ahlström, M., Namboozo, V., and Kiffe, M. (2020). Guide to Sanitation Resource-Recovery Products & Technologies: a supplement to the Compendium of Sanitation Systems and Technologies. 1st Edition. Swedish University of Agricultural Sciences, Department of Energy and Technology, Uppsala, Sweden. External: https://pub.epsilon.slu.se/21284/1/mcconville_j_et_al_210119.pdf
Small-scale renewable energy technologies
Wood fuel, charcoal, cook stoves
o Chesterman S, Neely C, Njenga M, & Kimaro A A. (2018). Sustainable woodfuel (charcoal and firewood) systems in coastal region in Tanzania. Stakeholder engagement in context analysis and planning using SHARED methodology. External: http://www.worldagroforestry.org/downloads/Publications/PDFS/B17978.pdf
o Njenga M, Sundberg C, Gitau J K, Mahmoud Y, Röing De Nowina K, Mendum R, & Karltun E. (2020). Biochar stoves for socio-ecological resilience: Lessons from small-scale farms in rural Kenya. World Agroforestry. External: http://www.worldagroforestry.org/downloads/Publications/PDFS/PB20040.pdf
o Sundberg, C., Karltun, E., Gitau, J. K., Kätterer, T., Kimutai, G. M., Mahmoud, Y., Njenga, M., Nyberg, G., Roing de Nowina, K., Roobroeck, D., & Sieber, P. (2020). Biochar from cookstoves reduces greenhouse gas emissions from smallholder farms in Africa. Mitigation and Adaptation Strategies for Global Change, 25(6), 953–967. Doi: https://doi.org/10.1007/s11027-020-09920-7
https://cleancooking.org/clean-cooking-systems-strategy/current-challenges/ (7 detailed infographic pages)
Biogas
o Pager 8-13 from: Vögeli, Y., Lohri, C., Gallardo, A., Diener, S., & Zurbrügg, C. (2014). Anaerobic Digestion of Biowaste in Developing Countries—Practical Information and Case Studies. Doi: https://doi.org/10.13140/2.1.2663.1045
o Seadi, T. A., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas Handbook. University of Southern Denmark. Esbjerg. External: https://www.lemvigbiogas.com/BiogasHandbook.pdf
o Rakotojaona, L. (2013). Domestic Biogas Development in Developing Countries. ENEA Consulting. External: http://www.enea-consulting.com/wp-content/uploads/2015/05/Open-Ideas-Domestic-biogas-projects-in-developing-countries.pdf
o Khan, E. U., & Martin, A. R. (2016). Review of biogas digester technology in rural Bangladesh. Renewable and Sustainable Energy Reviews, 62, 247–259. Doi: https://doi.org/10.1016/j.rser.2016.04.044
o Khan, E. U., Mainali, B., Martin, A., & Silveira, S. (2014). Techno-economic analysis of small scale biogas based polygeneration systems: Bangladesh case study. Sustainable Energy Technologies and Assessments, 7, 68–78. Doi: https://doi.org/10.1016/j.seta.2014.03.004
o Khan, E. U., & Martin, A. R. (2015). Optimization of hybrid renewable energy polygeneration system with membrane distillation for rural households in Bangladesh. Energy, 93 , 1116–1127. Doi: https://doi.org/10.1016/j.energy.2015.09.109
Hydropower, solar, and wind energy
o Tan, D. and Seng, A. K. (2011). Handbook for Solar Photovoltaic (PV) Systems. Energy Market Authority, Singapore VIII. ISBN: 978-981-08-4462-2. External: https://policy.asiapacificenergy.org/sites/default/files/Solar_Handbook_Apr2011.pdf
o Elie Bertrand Kengne Signe, Oumarou Hamandjoda, Jean Nganhou (2017). Methodology of Feasibility Studies of Micro-Hydro power plants in Cameroon: Case of the Micro-hydro of KEMKEN, Energy Procedia, 119:17-28. https://doi.org/10.1016/j.egypro.2017.07.042.
o Nor F. Yah, Ahmed N. Oumer, Mat S. Idris (2017). Small scale hydro-power as a source of renewable energy in Malaysia: A review, Renewable and Sustainable Energy Reviews, 72:228-239. https://doi.org/10.1016/j.rser.2017.01.068.
o Siddharth Joshi, Meera Karamta, Bhavya Pandya (2022).Small scale wind & solar photovoltaic energy conversion system for DC microgrid applications, Materials Today: Proceedings, 62(13):7092-7097. https://doi.org/10.1016/j.matpr.2022.01.461.
o Tim Olsen and Robert Preus (2015). Small Wind Site Assessment Guidelines. https://www.nrel.gov/docs/fy15osti/63696.pdf
Food traceability
o Bosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control, 33(1), 32–48. Doi: https://doi.org/10.1016/j.foodcont.2013.02.004
o Badia-Melis, R., Mishra, P., & Ruiz-García, L. (2015). Food traceability: New trends and recent advances. A review. Food Control, 57, 393–401. Doi: https://doi.org/10.1016/j.foodcont.2015.05.005
System Analysis of communities in low income countries with emphasis on food, water and energy resources
o Mcconville, J., Niwagaba, C., Nordin, A., Ahlström, M., Namboozo, V., and Kiffe, M. (2020). Guide to Sanitation Resource-Recovery Products & Technologies: a supplement to the Compendium of Sanitation Systems and Technologies. 1st Edition. Swedish University of Agricultural Sciences, Department of Energy and Technology, Uppsala, Sweden. Pages 7-11, overview of Cross-cutting issues (section X). External: https://pub.epsilon.slu.se/21284/1/mcconville_j_et_al_210119.pdf
o Meadows, Donella H. (2009). Thinking in systems : a primer. London. Please read through the book excerpts with a particular focus on pages 11-58 and 187-195 (Appendix)

Kursfakta

Kursen ges som en fristående kurs: Ja Kursen ges som en programkurs: EnvEuro - European Master in Environmental Science Mark, vatten och miljö - masterprogram Agronomprogrammet - mark/växt Kursavgift: Studieavgift, endast för medborgare utanför EU, EES, och Schweiz: 19030 SEK Nivå: Avancerad nivå (A1N)
Ämne: Teknologi Miljövetenskap Teknologi Miljövetenskap
Kurskod: TN0354 Anmälningskod: SLU-10408 Plats: Uppsala Distanskurs: Nej Undervisningsspråk: Engelska Ansvarig institution: Institutionen för energi och teknik Studietakt: 25%